Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2018

01.07.2018 | Original Paper

Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil

verfasst von: Jian Li, Hang Su, Feng Chai, Dong-mei Xue, Li Li, Xiang-yang Li, Hui-min Meng

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic soil was investigated. The corrosion rate was evaluated with the mass loss measurements, while the corrosion morphology of surface and cross section of rust layer was observed by scanning electron microscopy. The corrosion products were analyzed by energy-dispersive X-ray spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy, and the polarization curve was measured using potentiodynamic polarization method. Results indicated that C1 steel displayed good corrosion resistance in the simulated acidic soil, of which the corrosion rate was only 30% of that of Q235 steel after corrosion for 360 h. The analysis of rust layer showed that lower carbon content in steel could reduce the tendency of micro cell corrosion and appropriate amount of chromium could improve the corrosion potential of metal matrix. Moreover, the analysis of X-ray photoelectron spectroscopy revealed that the chromium enriched in inner rust layer of C1 steel existed mainly in the form of Fe2CrO4, which facilitated the formation of Cr-goethite and improved the protection of corrosion products.
Literatur
[1]
Zurück zum Zitat Electrical Construction Standard Formulation Technical Committee, IEEE Std. 80-2000 Guide for Safety in AC Substation Grounding, The Institute of Electrical and Electronics Engineers, Inc., New York, 2000. Electrical Construction Standard Formulation Technical Committee, IEEE Std. 80-2000 Guide for Safety in AC Substation Grounding, The Institute of Electrical and Electronics Engineers, Inc., New York, 2000.
[2]
Zurück zum Zitat W. Chen, R. Bi, J. Wang, H. Chen, Int. J. Comput. Electr. Eng. 5 (2013) 309–312. W. Chen, R. Bi, J. Wang, H. Chen, Int. J. Comput. Electr. Eng. 5 (2013) 309–312.
[3]
Zurück zum Zitat F.J. Yan, X.G. Li, X.G. Wang, Appl. Mech. Mater. 331 (2013) 416–420. F.J. Yan, X.G. Li, X.G. Wang, Appl. Mech. Mater. 331 (2013) 416–420.
[4]
Zurück zum Zitat L.H. Zhang, X.F. Zhang, W.Y. Zhang, Corros. Sci. Prot. Technol. 25 (2013) 127–132. L.H. Zhang, X.F. Zhang, W.Y. Zhang, Corros. Sci. Prot. Technol. 25 (2013) 127–132.
[5]
Zurück zum Zitat E.S. Ibrahim, Electr. Pow. Syst. Res. 52 (1999) 9–17. E.S. Ibrahim, Electr. Pow. Syst. Res. 52 (1999) 9–17.
[6]
Zurück zum Zitat X.Z. Li, S. Xu, Q. Yi, B. Feng, B.T. Hu, Adv. Mater. Res. 887-888 (2014) 1068–1071. X.Z. Li, S. Xu, Q. Yi, B. Feng, B.T. Hu, Adv. Mater. Res. 887-888 (2014) 1068–1071.
[7]
Zurück zum Zitat S.C. Lim, C. Gomes, M.Z.A.A. Kadir, Int. J. Electrochem. Sci. 8 (2013) 11429–11447. S.C. Lim, C. Gomes, M.Z.A.A. Kadir, Int. J. Electrochem. Sci. 8 (2013) 11429–11447.
[8]
Zurück zum Zitat X. Dong, D. Yang, X. Guan, M. Du, D. Liu, Anti-Corros. Method M. 60 (2013) 143–147. X. Dong, D. Yang, X. Guan, M. Du, D. Liu, Anti-Corros. Method M. 60 (2013) 143–147.
[9]
Zurück zum Zitat A.M. Huntz, V. Bague, G. Beauple, C. Haut, C Sévérac, P. Lecour, X. Longaygue, F. Ropital, Appl. Surf. Sci. 207 (2003) 255–275. A.M. Huntz, V. Bague, G. Beauple, C. Haut, C Sévérac, P. Lecour, X. Longaygue, F. Ropital, Appl. Surf. Sci. 207 (2003) 255–275.
[10]
Zurück zum Zitat L.N. Xu, S.Q. Guo, W. Chang, T.H. Chen, L.H. Hu, M.X. Lu, Appl. Surf. Sci. 270 (2013) 395–404. L.N. Xu, S.Q. Guo, W. Chang, T.H. Chen, L.H. Hu, M.X. Lu, Appl. Surf. Sci. 270 (2013) 395–404.
[11]
Zurück zum Zitat R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, U. Stolz, Corros. Sci. 29 (1989) 899–917. R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, U. Stolz, Corros. Sci. 29 (1989) 899–917.
[12]
Zurück zum Zitat T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto, H. Miyuki, Corros. Sci. 45 (2003) 1863–1879. T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto, H. Miyuki, Corros. Sci. 45 (2003) 1863–1879.
[13]
Zurück zum Zitat Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 74 (2013) 424–429. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 74 (2013) 424–429.
[14]
Zurück zum Zitat Y.H. Qian, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 71 (2013) 72–77. Y.H. Qian, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 71 (2013) 72–77.
[15]
Zurück zum Zitat S. Suzuki, Y. Takahashi, T. Kamimura, H. Miyuki, K. Shinoda, K. Tohji, Y. Waseda, Corros. Sci. 46 (2004) 1751–1763. S. Suzuki, Y. Takahashi, T. Kamimura, H. Miyuki, K. Shinoda, K. Tohji, Y. Waseda, Corros. Sci. 46 (2004) 1751–1763.
[16]
Zurück zum Zitat Y.H. Wu, T.M. Liu, S.X. Luo, C. Sun, Materialwiss. Werkst. 41 (2010) 142–146. Y.H. Wu, T.M. Liu, S.X. Luo, C. Sun, Materialwiss. Werkst. 41 (2010) 142–146.
[17]
Zurück zum Zitat H. Su, A.J. Yan, X.P. Chen, F. Chai, J. Li, T. Huang, An accelerated simulation test method for soil corrosion, China, 201310259811.9, 2013. H. Su, A.J. Yan, X.P. Chen, F. Chai, J. Li, T. Huang, An accelerated simulation test method for soil corrosion, China, 201310259811.9, 2013.
[18]
Zurück zum Zitat Institute of Soil Science, Chinese Academy of Sciences in Nanjing, Analysis of soil physico-chemical properties, Shanghai Scientific and Technical Publishers, Shanghai, 1978. Institute of Soil Science, Chinese Academy of Sciences in Nanjing, Analysis of soil physico-chemical properties, Shanghai Scientific and Technical Publishers, Shanghai, 1978.
[19]
Zurück zum Zitat G.C. Allen, S.J. Harris, J.A. Jutson, J.M. Dyke, Appl. Surf. Sci. 37 (1989) 111–134. G.C. Allen, S.J. Harris, J.A. Jutson, J.M. Dyke, Appl. Surf. Sci. 37 (1989) 111–134.
[20]
Zurück zum Zitat J. Guo, S.W. Yang, C.J. Shang, Y. Wang, X.L. He, Corros. Sci. 51 (2009) 242–251. J. Guo, S.W. Yang, C.J. Shang, Y. Wang, X.L. He, Corros. Sci. 51 (2009) 242–251.
[21]
Zurück zum Zitat G.L. Cao, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Acta Metall. Sin. 46 (2010) 748–754. G.L. Cao, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Acta Metall. Sin. 46 (2010) 748–754.
[22]
Zurück zum Zitat M. Yamashita, H. Nagano, T. Misawa, H.E. Townsend, ISIJ Int. 38 (1998) 285–290. M. Yamashita, H. Nagano, T. Misawa, H.E. Townsend, ISIJ Int. 38 (1998) 285–290.
[23]
Zurück zum Zitat M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, Corros. Sci. 36 (1994) 283–299. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, Corros. Sci. 36 (1994) 283–299.
[24]
Zurück zum Zitat H. Konishi, M. Yamashita, H. Uchida, J. Mizuki, Mater. Trans. 46 (2005) 337–341. H. Konishi, M. Yamashita, H. Uchida, J. Mizuki, Mater. Trans. 46 (2005) 337–341.
[25]
Zurück zum Zitat Y.S. Choi, J.J. Shim, J.G. Kim, Mater. Sci. Eng. A 385 (2004) 148–156. Y.S. Choi, J.J. Shim, J.G. Kim, Mater. Sci. Eng. A 385 (2004) 148–156.
[26]
Zurück zum Zitat M. Yamashita, H. Konishi, J. Mizuki, H. Uchida, Mater. Trans. 45 (2004) 1920–1924. M. Yamashita, H. Konishi, J. Mizuki, H. Uchida, Mater. Trans. 45 (2004) 1920–1924.
[27]
Zurück zum Zitat M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Corros. Sci. 45 (2003) 381–394. M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Corros. Sci. 45 (2003) 381–394.
[28]
Zurück zum Zitat T.J. Yang, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Corrosion Protection 31 (2010) 540–541. T.J. Yang, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Corrosion Protection 31 (2010) 540–541.
[29]
Zurück zum Zitat J.B. Lee, Mater. Chem. Phys. 99 (2006) 224–234. J.B. Lee, Mater. Chem. Phys. 99 (2006) 224–234.
[30]
Zurück zum Zitat L.Y. Xu, Y.F. Cheng, Corros. Sci. 78 (2014) 162–171. L.Y. Xu, Y.F. Cheng, Corros. Sci. 78 (2014) 162–171.
[31]
Zurück zum Zitat W.V. Baeckmann, W. Schwenk, W. Prinz. Handbook of cathodic corrosion protection, third ed., Gulf Professional Publishing, Houston, 1997. W.V. Baeckmann, W. Schwenk, W. Prinz. Handbook of cathodic corrosion protection, third ed., Gulf Professional Publishing, Houston, 1997.
[32]
Zurück zum Zitat D. Neff, P. Dillmann, L. Bellot-Gurlet, G. Berangere, Corros. Sci. 47 (2005) 515–535. D. Neff, P. Dillmann, L. Bellot-Gurlet, G. Berangere, Corros. Sci. 47 (2005) 515–535.
[33]
Zurück zum Zitat W. Han, C. Pan, Z.Y. Wang, G.C. Yu, Corros. Sci. 88 (2014) 89–100. W. Han, C. Pan, Z.Y. Wang, G.C. Yu, Corros. Sci. 88 (2014) 89–100.
[34]
Zurück zum Zitat S.K. Kwon, K. Shinoda, S. Suzuki, Y. Waseda, Corros. Sci. 49 (2007) 1513–1526. S.K. Kwon, K. Shinoda, S. Suzuki, Y. Waseda, Corros. Sci. 49 (2007) 1513–1526.
[35]
Zurück zum Zitat T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci. 48 (2006) 2799–2812. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci. 48 (2006) 2799–2812.
[36]
Zurück zum Zitat S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Corros. Sci. 49 (2007) 1131–1142. S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Corros. Sci. 49 (2007) 1131–1142.
[37]
Zurück zum Zitat J. Morales, J.L. Tirado, C. Valera, J. Mater. Sci. 25 (1990) 1813–1815. J. Morales, J.L. Tirado, C. Valera, J. Mater. Sci. 25 (1990) 1813–1815.
Metadaten
Titel
Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil
verfasst von
Jian Li
Hang Su
Feng Chai
Dong-mei Xue
Li Li
Xiang-yang Li
Hui-min Meng
Publikationsdatum
01.07.2018
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2018
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0108-1

Weitere Artikel der Ausgabe 7/2018

Journal of Iron and Steel Research International 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.