Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2018

01.07.2018 | Original Paper

Modeling on impact zone volume generated by coherent supersonic jet and conventional supersonic jet

verfasst von: Guang-sheng Wei, Rong Zhu, Ling-zhi Yang, Kai Dong, Run-zao Liu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reaction rates and energy efficiency. However, there has been limited study on the impact characteristics of the coherent supersonic jet and the conventional supersonic jet. Thus, integrating theoretical models and numerical simulations, an optimized theoretical model was developed to calculate the volume of the impact zone generated by coherent and conventional supersonic jets. The optimized theoretical model was validated by water model experiments. The results show that the jet impact zone volume with coherent supersonic jet is much larger than that with conventional supersonic jet at the same lance height. The kd value, a newly defined variable that is the product of the dimensionless quantity of velocity and free distance, reflects the velocity attenuation and the potential core length of the main supersonic jet, which is a key parameter of the optimized theoretical model. The optimized theoretical model can well predict the jet impact zone volumes of coherent and conventional supersonic jets with the error no more than 3.62 and 9.37%, respectively.
Literatur
[1]
Zurück zum Zitat G.S. Wei, R. Zhu, T. Cheng, F. Zhao, J. Iron Steel Res. Int. 23 (2016) 997–1006.CrossRef G.S. Wei, R. Zhu, T. Cheng, F. Zhao, J. Iron Steel Res. Int. 23 (2016) 997–1006.CrossRef
[2]
Zurück zum Zitat K. Naito, Y. Ogawa, T. Inomoto, S. Kitamura, M. Yano, ISIJ Int. 40 (2000) 23–30.CrossRef K. Naito, Y. Ogawa, T. Inomoto, S. Kitamura, M. Yano, ISIJ Int. 40 (2000) 23–30.CrossRef
[3]
Zurück zum Zitat C.L. He, R. Zhu, K. Dong, Y.Q. Qiu, K.M. Sun, J. Iron Steel Res. Int. 18 (2011) No. 9, 13–20.CrossRef C.L. He, R. Zhu, K. Dong, Y.Q. Qiu, K.M. Sun, J. Iron Steel Res. Int. 18 (2011) No. 9, 13–20.CrossRef
[4]
Zurück zum Zitat G.S. Wei, R. Zhu, K. Dong, G.H. Ma, T. Cheng, Metall. Mater. Trans. B 47 (2016) 3066–3079.CrossRef G.S. Wei, R. Zhu, K. Dong, G.H. Ma, T. Cheng, Metall. Mater. Trans. B 47 (2016) 3066–3079.CrossRef
[6]
Zurück zum Zitat M. Alam, J. Naser, G. Brooks, A. Fontana, Metall. Mater. Trans. B 41 (2010) 1354–1367.CrossRef M. Alam, J. Naser, G. Brooks, A. Fontana, Metall. Mater. Trans. B 41 (2010) 1354–1367.CrossRef
[7]
Zurück zum Zitat S.C. Chen, R. Zhu, J.S. Li, C.L. He, M. Lü, J. Iron Steel Res. Int. 21 (2014) 589–595.CrossRef S.C. Chen, R. Zhu, J.S. Li, C.L. He, M. Lü, J. Iron Steel Res. Int. 21 (2014) 589–595.CrossRef
[8]
Zurück zum Zitat X.Y. Deng, J.C. Ma, W.J. Zhao, B. Cao, H.J. Jin, S. Li, J. Iron Steel Res. 25 (2013) No. 5, 14–18. X.Y. Deng, J.C. Ma, W.J. Zhao, B. Cao, H.J. Jin, S. Li, J. Iron Steel Res. 25 (2013) No. 5, 14–18.
[9]
Zurück zum Zitat Q. He, Z. Guo, J. Iron Steel Res. 16 (2004) No. 5, 1–4. Q. He, Z. Guo, J. Iron Steel Res. 16 (2004) No. 5, 1–4.
[10]
Zurück zum Zitat M. Alam, J. Naser, G. Brooks, A. Fontana, ISIJ Int. 52 (2012) 1026–1035.CrossRef M. Alam, J. Naser, G. Brooks, A. Fontana, ISIJ Int. 52 (2012) 1026–1035.CrossRef
[11]
[12]
Zurück zum Zitat Q. Li, M. Li, S. Kuang, Z. Zou, Metall. Mater. Trans. B 46 (2015) 1494–1509.CrossRef Q. Li, M. Li, S. Kuang, Z. Zou, Metall. Mater. Trans. B 46 (2015) 1494–1509.CrossRef
[13]
Zurück zum Zitat N.A. Molloy, J. Iron Steel Inst. 208 (1970) 943–950. N.A. Molloy, J. Iron Steel Inst. 208 (1970) 943–950.
[14]
[15]
Zurück zum Zitat M. Ersson, A. Tilliander, L. Jonsson, P. Jönsson, ISIJ Int. 48 (2008) 377–384.CrossRef M. Ersson, A. Tilliander, L. Jonsson, P. Jönsson, ISIJ Int. 48 (2008) 377–384.CrossRef
[16]
Zurück zum Zitat A. Nordquist, N. Kumbhat, L. Jonsson, P. Jönsson, Steel Res. Int. 77 (2006) 82–90.CrossRef A. Nordquist, N. Kumbhat, L. Jonsson, P. Jönsson, Steel Res. Int. 77 (2006) 82–90.CrossRef
[17]
[18]
Zurück zum Zitat M. Alam, G. Irons, G. Brooks, A. Fontana, J. Naser, ISIJ Int. 51 (2011) 1439–1447.CrossRef M. Alam, G. Irons, G. Brooks, A. Fontana, J. Naser, ISIJ Int. 51 (2011) 1439–1447.CrossRef
[19]
Zurück zum Zitat J. Solórzano-López, R. Zenit, M.A. Ramírez-Argáez, Appl. Math. Model. 35 (2011) 4991–5005.CrossRef J. Solórzano-López, R. Zenit, M.A. Ramírez-Argáez, Appl. Math. Model. 35 (2011) 4991–5005.CrossRef
[20]
Zurück zum Zitat M. Lee, V. Whitney, N. Molloy, Scand. J. Metall. 30 (2001) 330–336.CrossRef M. Lee, V. Whitney, N. Molloy, Scand. J. Metall. 30 (2001) 330–336.CrossRef
[21]
Zurück zum Zitat M. Alam, J. Naser, G. Brooks, Metall. Mater. Trans. B 41 (2010) 636–645.CrossRef M. Alam, J. Naser, G. Brooks, Metall. Mater. Trans. B 41 (2010) 636–645.CrossRef
[22]
Zurück zum Zitat G.S. Wei, R. Zhu, X.T. Wu, L.Z. Yang, K. Dong, T. Cheng, T.P. Tang, Metall. Mater. Trans. B 49 (2018) 1405–1420.CrossRef G.S. Wei, R. Zhu, X.T. Wu, L.Z. Yang, K. Dong, T. Cheng, T.P. Tang, Metall. Mater. Trans. B 49 (2018) 1405–1420.CrossRef
[23]
[24]
Zurück zum Zitat B.E. Launder, D.B. Spalding, Lectures in Mathematical Model of Turbulence, Academic Press, London, 1972.MATH B.E. Launder, D.B. Spalding, Lectures in Mathematical Model of Turbulence, Academic Press, London, 1972.MATH
[25]
Zurück zum Zitat G. Birkhoff, E.H. Zarantonello, Jets, wakes and cavities, Academic Press, New York, 1957.MATH G. Birkhoff, E.H. Zarantonello, Jets, wakes and cavities, Academic Press, New York, 1957.MATH
[26]
Zurück zum Zitat C.T. Crowe, D.F. Elger, J.A. Roberson, Engineering fluid mechanics, John Wiley & Sons, Sharon, MA, USA, 2004. C.T. Crowe, D.F. Elger, J.A. Roberson, Engineering fluid mechanics, John Wiley & Sons, Sharon, MA, USA, 2004.
[27]
Zurück zum Zitat T. Cheng, Fundamental study on flow field characteristics and impact law of coherent jet, University of Science and Technology Beijing, Beijing, 2016. T. Cheng, Fundamental study on flow field characteristics and impact law of coherent jet, University of Science and Technology Beijing, Beijing, 2016.
Metadaten
Titel
Modeling on impact zone volume generated by coherent supersonic jet and conventional supersonic jet
verfasst von
Guang-sheng Wei
Rong Zhu
Ling-zhi Yang
Kai Dong
Run-zao Liu
Publikationsdatum
01.07.2018
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2018
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0098-z

Weitere Artikel der Ausgabe 7/2018

Journal of Iron and Steel Research International 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.