Skip to main content
Erschienen in: Physics of Metals and Metallography 13/2021

18.08.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of TiH2 Oxidation Treatment on Foamed Aluminum Alloys Produced by Selective Laser Melting

verfasst von: Jintao An, Changjun Chen, Min Zhang

Erschienen in: Physics of Metals and Metallography | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Closed-cell foamed aluminum alloys were manufactured using selective laser melting (SLM), wherein TiH2 was selected as the foaming agent. The effects of oxidation treatment and content changes of TiH2 on the porosity, pore size distribution and microstructure of the foamed aluminum alloys were studied. The results showed that with increasing TiH2 content, the porosity of the foamed aluminum alloy first increased and then decreased, and the number of pores increased, forming a greater number of micron-sized pores. Moreover, with increasing TiH2 content, the pore size range became more concentrated, and the shape of the pores became more regular. The microhardness value of the manufactured foamed aluminum alloy was between 100 and 130 HV, and the TiH2 content did not have any obvious effects on the hardness value. The results of the compression experiments revealed that the materials manufactured by SLM had energy absorption characteristics and exhibited brittle fracture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Geramipour and H. Oveisi, “Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method,” Trans. Nonferrous Met. Soc. China 27 (7), 1569–1579 (2017).CrossRef T. Geramipour and H. Oveisi, “Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method,” Trans. Nonferrous Met. Soc. China 27 (7), 1569–1579 (2017).CrossRef
2.
Zurück zum Zitat T. Hipke, J. Hohlfeld, and S. Rybandt, “Functionally aluminum foam composites for building industry,” Proc. Mater. Sci. 4, 133–138 (2014).CrossRef T. Hipke, J. Hohlfeld, and S. Rybandt, “Functionally aluminum foam composites for building industry,” Proc. Mater. Sci. 4, 133–138 (2014).CrossRef
3.
Zurück zum Zitat R. Soltani, Z. Sarajan, and M. Soltani, “Foaming of pure aluminum by TiH2,” Mater. Res. Innovations 18 (6), 401–406 (2013).CrossRef R. Soltani, Z. Sarajan, and M. Soltani, “Foaming of pure aluminum by TiH2,” Mater. Res. Innovations 18 (6), 401–406 (2013).CrossRef
4.
Zurück zum Zitat A. K. Shukla and J. Dutta Majumdar, “Studies on wear behavior of aluminum foam developed by spray forming route,” Mater. Today 19, 532–535 (2019). A. K. Shukla and J. Dutta Majumdar, “Studies on wear behavior of aluminum foam developed by spray forming route,” Mater. Today 19, 532–535 (2019).
5.
Zurück zum Zitat X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu, and Y. Liu, “Acoustic properties of closed-cell aluminum foams with different macrostructures,” J. Mater. Sci. Technol. 33 (11), 1227–1234 (2017).CrossRef X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu, and Y. Liu, “Acoustic properties of closed-cell aluminum foams with different macrostructures,” J. Mater. Sci. Technol. 33 (11), 1227–1234 (2017).CrossRef
6.
Zurück zum Zitat M. Altenaiji, Z. W. Guan, W. J. Cantwell, Y. Zhao, and G. K. Schleyer, “Characterization of aluminum matrix syntactic foams under drop weight impact,” Mater. Des. 59, 296–302 (2014).CrossRef M. Altenaiji, Z. W. Guan, W. J. Cantwell, Y. Zhao, and G. K. Schleyer, “Characterization of aluminum matrix syntactic foams under drop weight impact,” Mater. Des. 59, 296–302 (2014).CrossRef
7.
Zurück zum Zitat X. Xia, H. Feng, X. Zhang, and W. Zhao, “The compressive properties of closed-cell aluminum foams with different Mn additions,” Mater. Des. 51, 797–802 (2013).CrossRef X. Xia, H. Feng, X. Zhang, and W. Zhao, “The compressive properties of closed-cell aluminum foams with different Mn additions,” Mater. Des. 51, 797–802 (2013).CrossRef
8.
Zurück zum Zitat B. Matijasevic and J. Banhart, “Improvement of aluminum foam technology by tailoring of blowing agent,” Scr. Mater. 54 (4), 503–508 (2006).CrossRef B. Matijasevic and J. Banhart, “Improvement of aluminum foam technology by tailoring of blowing agent,” Scr. Mater. 54 (4), 503–508 (2006).CrossRef
9.
Zurück zum Zitat A. Aldoshan and S. Khanna, “Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam,” Mater. Sci. Eng., A 689, 17–24 (2017).CrossRef A. Aldoshan and S. Khanna, “Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam,” Mater. Sci. Eng., A 689, 17–24 (2017).CrossRef
10.
Zurück zum Zitat C. Liu, M. Zhang, and C. Chen, “Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg–Ca alloys produced by laser additive manufacturing,” Mater. Sci. Eng., A 703, 359–371 (2017).CrossRef C. Liu, M. Zhang, and C. Chen, “Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg–Ca alloys produced by laser additive manufacturing,” Mater. Sci. Eng., A 703, 359–371 (2017).CrossRef
11.
Zurück zum Zitat J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, “A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends,” J. Mater. Sci. Technol. 35 (2), 270–284 (2019).CrossRef J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, “A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends,” J. Mater. Sci. Technol. 35 (2), 270–284 (2019).CrossRef
12.
Zurück zum Zitat J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long, and G. Zhu, “Role of scanning strategy on residual stress distribution in Ti–6Al–4V alloy prepared by selective laser melting,” Optik 170, 342–352 (2018).CrossRef J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long, and G. Zhu, “Role of scanning strategy on residual stress distribution in Ti–6Al–4V alloy prepared by selective laser melting,” Optik 170, 342–352 (2018).CrossRef
13.
Zurück zum Zitat F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, M. Lombardi, P. Fino, and D. Manfredi, “On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties,” Materials (Basel) 10 (1), 76 (2017).CrossRef F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, M. Lombardi, P. Fino, and D. Manfredi, “On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties,” Materials (Basel) 10 (1), 76 (2017).CrossRef
14.
Zurück zum Zitat L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, and R. B. Wicker, “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol. 28 (1), 1–14 (2012).CrossRef L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, and R. B. Wicker, “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol. 28 (1), 1–14 (2012).CrossRef
15.
Zurück zum Zitat J. Wu, X. Q. Wang, W. Wang, M. M. Attallah, and M. H. Loretto, “Microstructure and strength of selectively laser melted AlSi10Mg,” Acta Mater. 117, 311–320 (2016).CrossRef J. Wu, X. Q. Wang, W. Wang, M. M. Attallah, and M. H. Loretto, “Microstructure and strength of selectively laser melted AlSi10Mg,” Acta Mater. 117, 311–320 (2016).CrossRef
16.
Zurück zum Zitat E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, “A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties,” Prog. Mater. Sci. 74, 401–477 (2015).CrossRef E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, “A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties,” Prog. Mater. Sci. 74, 401–477 (2015).CrossRef
17.
Zurück zum Zitat E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminum components,” J. Mater. Process. Technol. 211 (2), 275–284 (2011).CrossRef E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminum components,” J. Mater. Process. Technol. 211 (2), 275–284 (2011).CrossRef
18.
Zurück zum Zitat W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism,” Mater. Sci. Eng., A 663, 116–125 (2016).CrossRef W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism,” Mater. Sci. Eng., A 663, 116–125 (2016).CrossRef
19.
Zurück zum Zitat Z. Hu, H. Zhang, H. Zhu, Z. Xiao, X. Nie, and X. Zeng, “Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting,” Mater. Sci. Eng., A 759, 154–166 (2019).CrossRef Z. Hu, H. Zhang, H. Zhu, Z. Xiao, X. Nie, and X. Zeng, “Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting,” Mater. Sci. Eng., A 759, 154–166 (2019).CrossRef
20.
Zurück zum Zitat M. Liu, N. Takata, A. Suzuki, and M. Kobashi, “Microstructural characterization of cellular AlSi10Mg alloy fabricated by selective laser melting,” Mater. Des. 157, 478–491 (2018).CrossRef M. Liu, N. Takata, A. Suzuki, and M. Kobashi, “Microstructural characterization of cellular AlSi10Mg alloy fabricated by selective laser melting,” Mater. Des. 157, 478–491 (2018).CrossRef
21.
Zurück zum Zitat O. Gharbi, D. Jiang, D. R. Feenstra, S. K. Kairy, Y. Wu, C. R. Hutchinson, and N. Birbilis, “On the corrosion of additively manufactured aluminum alloy AA2024 prepared by selective laser melting,” Corros. Sci. 143, 93–106 (2018).CrossRef O. Gharbi, D. Jiang, D. R. Feenstra, S. K. Kairy, Y. Wu, C. R. Hutchinson, and N. Birbilis, “On the corrosion of additively manufactured aluminum alloy AA2024 prepared by selective laser melting,” Corros. Sci. 143, 93–106 (2018).CrossRef
22.
Zurück zum Zitat Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, and X. Wu, “Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms,” Acta Mater. 171, 108–118 (2019).CrossRef Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, and X. Wu, “Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms,” Acta Mater. 171, 108–118 (2019).CrossRef
23.
Zurück zum Zitat T. Kimura, T. Nakamoto, T. Ozaki, K. Sugita, M. Mizuno, and H. Araki, “Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content,” Mater. Sci. Eng., A 754, 786–798 (2019).CrossRef T. Kimura, T. Nakamoto, T. Ozaki, K. Sugita, M. Mizuno, and H. Araki, “Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content,” Mater. Sci. Eng., A 754, 786–798 (2019).CrossRef
24.
Zurück zum Zitat T. Kimura and T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,” Mater. Des. 89, 1294–1301 (2016).CrossRef T. Kimura and T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,” Mater. Des. 89, 1294–1301 (2016).CrossRef
25.
Zurück zum Zitat G. H. Zeng, T. Song, Y. H. Dai, H.P. Tang, and M. Yan, “3D printed breathable mould steel: Small micrometer-sized, interconnected pores by creatively introducing foaming agent to additive manufacturing,” Mater. Des. 169, 107693 (2019).CrossRef G. H. Zeng, T. Song, Y. H. Dai, H.P. Tang, and M. Yan, “3D printed breathable mould steel: Small micrometer-sized, interconnected pores by creatively introducing foaming agent to additive manufacturing,” Mater. Des. 169, 107693 (2019).CrossRef
26.
Zurück zum Zitat M. Zhang, C. Chen, and Y. Huang, “Laser additive manufacturing foam aluminum–12  wt % silicon with different addition TiH2 foaming agent,” Mater. Sci. Technol. 34 (8), 968–981 (2017).CrossRef M. Zhang, C. Chen, and Y. Huang, “Laser additive manufacturing foam aluminum–12  wt % silicon with different addition TiH2 foaming agent,” Mater. Sci. Technol. 34 (8), 968–981 (2017).CrossRef
27.
Zurück zum Zitat X. Feng, Z. Zhang, X. Cui, G. Jin, W. Zheng, and H. Liu, “Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process,” Mater. Lett. 233, 126–129 (2018).CrossRef X. Feng, Z. Zhang, X. Cui, G. Jin, W. Zheng, and H. Liu, “Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process,” Mater. Lett. 233, 126–129 (2018).CrossRef
28.
Zurück zum Zitat B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54 (7), 1887–1900 (2006).CrossRef B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54 (7), 1887–1900 (2006).CrossRef
29.
Zurück zum Zitat Ľ. Orovčík, M. Nosko, P. Švec, Š. Nagy, M. Čavojský, F. Simančík, and J. Jerz, “Effect of the TiH2 pre-treatment on the energy absorption ability of 6061 aluminum alloy foam,” Mater. Lett. 148, 82–85 (2015).CrossRef Ľ. Orovčík, M. Nosko, P. Švec, Š. Nagy, M. Čavojský, F. Simančík, and J. Jerz, “Effect of the TiH2 pre-treatment on the energy absorption ability of 6061 aluminum alloy foam,” Mater. Lett. 148, 82–85 (2015).CrossRef
30.
Zurück zum Zitat B. Muduli, T. Ramesh, K. C. H. Kumar, N. Rajalakshmi, and M. Mukherjee, “Customized heat treatment of TiH2 for the foaming of aluminum alloys,” Materialia 8, 100431 (2019).CrossRef B. Muduli, T. Ramesh, K. C. H. Kumar, N. Rajalakshmi, and M. Mukherjee, “Customized heat treatment of TiH2 for the foaming of aluminum alloys,” Materialia 8, 100431 (2019).CrossRef
31.
Zurück zum Zitat A. Azarniya and A. Rasooli, “High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH2) powder,” Adv. Powder Technol. 27 (1), 281–288 (2016).CrossRef A. Azarniya and A. Rasooli, “High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH2) powder,” Adv. Powder Technol. 27 (1), 281–288 (2016).CrossRef
32.
Zurück zum Zitat D. Mandrino, I. Paulin, and S. D. Škapin, “Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH2 foaming agent,” Mater. Charact. 72, 87–93 (2012).CrossRef D. Mandrino, I. Paulin, and S. D. Škapin, “Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH2 foaming agent,” Mater. Charact. 72, 87–93 (2012).CrossRef
33.
Zurück zum Zitat N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, Ch. Tuck, and R. Hague, “3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting,” Prog. Mater. Sci. 106, 100578 (2019).CrossRef N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, Ch. Tuck, and R. Hague, “3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting,” Prog. Mater. Sci. 106, 100578 (2019).CrossRef
34.
Zurück zum Zitat P. Wang, H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino, “Selective laser melting of Al-Zn–Mg–Cu: heat treatment, microstructure and mechanical properties,” J. Alloys Compd. 707, 287–290 (2017).CrossRef P. Wang, H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino, “Selective laser melting of Al-Zn–Mg–Cu: heat treatment, microstructure and mechanical properties,” J. Alloys Compd. 707, 287–290 (2017).CrossRef
35.
Zurück zum Zitat H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016).CrossRef H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016).CrossRef
Metadaten
Titel
Effect of TiH2 Oxidation Treatment on Foamed Aluminum Alloys Produced by Selective Laser Melting
verfasst von
Jintao An
Changjun Chen
Min Zhang
Publikationsdatum
18.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 13/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2113007X

Weitere Artikel der Ausgabe 13/2021

Physics of Metals and Metallography 13/2021 Zur Ausgabe