Skip to main content
Erschienen in: Knowledge and Information Systems 3/2022

19.01.2022 | Regular Paper

Effective scheduling algorithm for load balancing in fog environment using CNN and MPSO

verfasst von: Fatma M. Talaat, Hesham A. Ali, Mohamed S. Saraya, Ahmed I. Saleh

Erschienen in: Knowledge and Information Systems | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fog computing (FC) designates a decentralized computing structure placed among the devices that produce data and cloud. Such flexible structure empowers users to place resources to increase performance. However, limited resources and low delay services obstruct the application of new virtualization technologies in the task scheduling and resource management of fog computing. Scheduling and load balancing (LB) in the cloud computing have been widely studied. However, countless efforts in LB have been proposed in the fog architectures. This presents some enticing challenges to solve the problem of how tasks are routed between different physical devices between fog nodes and cloud. Within fog, due to its mass and heterogeneity of devices, the scheduling is very difficult. There are still few studies that have been conducted. LB is a very interesting and important study area in FC as it aims to achieve high resource utilization. There are various challenges in LB such as security and fault tolerance. The main objective of this paper is to introduce an effective dynamic load balancing technique (EDLB) using convolutional neural network and modified particle swarm optimization, which is composed of three main modules, namely: (i) fog resource monitor (FRM), (ii) CNN-based classifier (CBC), and (iii) optimized dynamic scheduler (ODS). The main purpose of EDLB is to achieve LB in FC environment via dynamic real-time scheduling algorithm. This paper studies the FC architecture for Healthcare system applications. The FRM is responsible for monitoring each server resource and save the server's data into table called fog resources table. The CNN-based classifier (CBC) is responsible for classifying each fog server to suitable or not suitable. The optimized dynamic scheduler (ODS) is responsible for assigning the incoming process to the most appropriate server. Comparing EDLB with other previous LB algorithms, it reduces the response time and achieves high resource utilization. Hence, it is an efficient way to ensure the continuous service. Accordingly, EDLB is simple and efficient in real-time systems in fog computing such as in the case of healthcare system. Although several methods in LB for FC have been introduced, they have many limitations. EDLB overcomes these limitations and achieves high performance in various scenarios. It achieved better makespan, average resource utilization and load balancing level as compared to previously mentioned LB algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roy S, Chowdhury C (2017) Integration of internet of everything (IoE) with cloud. In: Batalla JM, Mastorakis G, Mavromoustakis CX, Pallis E (eds) Internet of things beyond the internet of things. Springer, Cham, pp 199–222CrossRef Roy S, Chowdhury C (2017) Integration of internet of everything (IoE) with cloud. In: Batalla JM, Mastorakis G, Mavromoustakis CX, Pallis E (eds) Internet of things beyond the internet of things. Springer, Cham, pp 199–222CrossRef
2.
Zurück zum Zitat Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions. Future Gener Comput Syst 79:849–861CrossRef Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions. Future Gener Comput Syst 79:849–861CrossRef
3.
Zurück zum Zitat Zanoon N, Al-Haj A, Khwaldeh SM (2017) Cloud computing and big data is there a relation between the two: a study. Int J Appl Eng Res 12(17):6970–6982 (ISSN 0973-4562) Zanoon N, Al-Haj A, Khwaldeh SM (2017) Cloud computing and big data is there a relation between the two: a study. Int J Appl Eng Res 12(17):6970–6982 (ISSN 0973-4562)
4.
Zurück zum Zitat Negash B, Rahmani AM, Liljeberg P, Jantsch A (2017) Fog computing fundamentals in the internet-of-things. In: Rahmani AM, Liljeberg P, Preden JS, Jantsch A (eds) Fog COMPUTING IN THE INTERNET OF THINGS. Springer, Cham, pp 3–13 Negash B, Rahmani AM, Liljeberg P, Jantsch A (2017) Fog computing fundamentals in the internet-of-things. In: Rahmani AM, Liljeberg P, Preden JS, Jantsch A (eds) Fog COMPUTING IN THE INTERNET OF THINGS. Springer, Cham, pp 3–13
5.
Zurück zum Zitat Gilchrist A (2016) The technical and business innovators of the industrial internet. Industry 4:33–64 Gilchrist A (2016) The technical and business innovators of the industrial internet. Industry 4:33–64
6.
Zurück zum Zitat Park S, Hwang M, Lee S, Park YB (2015) A generic software development process refined from best practices for cloud computing. Sustainability 7:5321–5344 (ISSN 2071-1050)CrossRef Park S, Hwang M, Lee S, Park YB (2015) A generic software development process refined from best practices for cloud computing. Sustainability 7:5321–5344 (ISSN 2071-1050)CrossRef
7.
Zurück zum Zitat Godse M, Mulik Sh (2009) An approach for selecting software-as-a-service (SaaS)vol 74. IEEE CS, pp 155–158 Godse M, Mulik Sh (2009) An approach for selecting software-as-a-service (SaaS)vol 74. IEEE CS, pp 155–158
8.
Zurück zum Zitat Javier E, David C, Arturo M (2008) Application development over software-as-a-service platforms, vol 48. IEEE, pp 97–104 Javier E, David C, Arturo M (2008) Application development over software-as-a-service platforms, vol 48. IEEE, pp 97–104
9.
Zurück zum Zitat Liao H (2009) Design of SaaS-based software architecture, vol 46. IEEE, pp 277–281 Liao H (2009) Design of SaaS-based software architecture, vol 46. IEEE, pp 277–281
10.
Zurück zum Zitat Satyanarayana S (2012) Cloud computing: SAAS. GESJ Comput Sci Telecommun 36(4):76–79 Satyanarayana S (2012) Cloud computing: SAAS. GESJ Comput Sci Telecommun 36(4):76–79
11.
Zurück zum Zitat Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV (2017) Fog computing for sustainable smart cities. ACM Comput Surv 50:1–43CrossRef Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV (2017) Fog computing for sustainable smart cities. ACM Comput Surv 50:1–43CrossRef
12.
Zurück zum Zitat Srirama SN (2017) Mobile web and cloud services enabling Internet of Things. CSI Trans ICT 5:109–117CrossRef Srirama SN (2017) Mobile web and cloud services enabling Internet of Things. CSI Trans ICT 5:109–117CrossRef
13.
Zurück zum Zitat Atlam HF, Walters RJ, Wills GB (2018) Fog computing and the internet of things: a review. Big Data Cognit Comput 2:10CrossRef Atlam HF, Walters RJ, Wills GB (2018) Fog computing and the internet of things: a review. Big Data Cognit Comput 2:10CrossRef
14.
Zurück zum Zitat Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of Things. In: Proceedings of the MCC workshop on mobile cloud computing. ACM, USA, pp 13–16 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of Things. In: Proceedings of the MCC workshop on mobile cloud computing. ACM, USA, pp 13–16
15.
Zurück zum Zitat Rathore N, Chana I (2014) Load balancing and job migration techniques in grid: a survey of recent trends. Wirel Pers Commun 79:2089–2125 (ISSN 0929-6212)CrossRef Rathore N, Chana I (2014) Load balancing and job migration techniques in grid: a survey of recent trends. Wirel Pers Commun 79:2089–2125 (ISSN 0929-6212)CrossRef
16.
Zurück zum Zitat Soltani N, Sharifi M (2014) A load balancing algorithm based on replication and movement of data items for dynamic structured P2P System. Int J Peer Peer Netw (IJP2P) 5(3):15–32CrossRef Soltani N, Sharifi M (2014) A load balancing algorithm based on replication and movement of data items for dynamic structured P2P System. Int J Peer Peer Netw (IJP2P) 5(3):15–32CrossRef
17.
Zurück zum Zitat Soundarabai PB, Sahai RK, Thriveni J, Venugopal KR, Patnaik LM (2012) Comparative study of load balancing techniques in distributed system. Int J Inf Technol Knowl Manag 6(1):53–60 Soundarabai PB, Sahai RK, Thriveni J, Venugopal KR, Patnaik LM (2012) Comparative study of load balancing techniques in distributed system. Int J Inf Technol Knowl Manag 6(1):53–60
18.
Zurück zum Zitat Khan Z, Singh R, Alam J, Saxena S (2011) classification of load balancing condition for parrel and distributed system. IJCSI 8(5):411 Khan Z, Singh R, Alam J, Saxena S (2011) classification of load balancing condition for parrel and distributed system. IJCSI 8(5):411
19.
Zurück zum Zitat Katare RK, Kumara M (2017) A comparative study of various load balancing algorithm in parallel and distributed multiprocessor system. Int J Comput Appl 169(10):0975–8887 Katare RK, Kumara M (2017) A comparative study of various load balancing algorithm in parallel and distributed multiprocessor system. Int J Comput Appl 169(10):0975–8887
20.
Zurück zum Zitat Elngomi ZM, Khanfar K (2016) A comparative study of load balancing algorithms: a review paper. IJCSMC 5(6):448–458 Elngomi ZM, Khanfar K (2016) A comparative study of load balancing algorithms: a review paper. IJCSMC 5(6):448–458
21.
Zurück zum Zitat Paulsingh S, Sandhya RA, Sahai R, Venugopal KR, Lalit P (2012) Comparative study on load balancing techniques in distributed systems. J Ambient Intell Humaniz Comput 6:1–16 Paulsingh S, Sandhya RA, Sahai R, Venugopal KR, Lalit P (2012) Comparative study on load balancing techniques in distributed systems. J Ambient Intell Humaniz Comput 6:1–16
22.
Zurück zum Zitat Prajapati R, Rathod D, Khanna S (2015) Comparison of static and dynamic load balancing in grid computing. Int J Technol Res Eng 2(7):2347–4718 Prajapati R, Rathod D, Khanna S (2015) Comparison of static and dynamic load balancing in grid computing. Int J Technol Res Eng 2(7):2347–4718
26.
27.
Zurück zum Zitat Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Advances in neural information processing systems, pp 2553–2561 Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Advances in neural information processing systems, pp 2553–2561
28.
29.
Zurück zum Zitat Hof RD (2018) Is artificial intelligence finally coming into its own?. MIT Technol Rev. Retrieved Hof RD (2018) Is artificial intelligence finally coming into its own?. MIT Technol Rev. Retrieved
31.
Zurück zum Zitat Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2017) Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag 34(4):18–42CrossRef Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2017) Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag 34(4):18–42CrossRef
33.
Zurück zum Zitat Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intell Neurosci 2015:1–20CrossRef Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intell Neurosci 2015:1–20CrossRef
34.
Zurück zum Zitat Itrat F, Nadeem J, Iqbal MN, Shafi I, Anjum A, Memon U (2018) Integration of cloud and fog based environment for effective resource distribution in smart buildings. In: 14th IEEE international wireless communications and mobile computing conference (IWCMC-2018) Itrat F, Nadeem J, Iqbal MN, Shafi I, Anjum A, Memon U (2018) Integration of cloud and fog based environment for effective resource distribution in smart buildings. In: 14th IEEE international wireless communications and mobile computing conference (IWCMC-2018)
35.
Zurück zum Zitat Javaid S, Javaid N, Tayyaba S, Abdul Sattar N, Ruqia B, Zahid M (2018) Resource allocation using fog-2-cloud based environment for smart buildings. In: 14th IEEE international wireless communications and mobile computing conference (IWCMC-2018) Javaid S, Javaid N, Tayyaba S, Abdul Sattar N, Ruqia B, Zahid M (2018) Resource allocation using fog-2-cloud based environment for smart buildings. In: 14th IEEE international wireless communications and mobile computing conference (IWCMC-2018)
36.
Zurück zum Zitat Al Faruque MA, Vatanparvar K (2016) Energy management-as-a-service over fog computing platform. IEEE Internet Things J 3(2):161–169CrossRef Al Faruque MA, Vatanparvar K (2016) Energy management-as-a-service over fog computing platform. IEEE Internet Things J 3(2):161–169CrossRef
37.
Zurück zum Zitat Zahoor S, Javaid N, Khan A, Ruqia B, Muhammad FJ, Zahid M (2018) A cloud-fog-based smart grid model for efficient resource utilization. In: 14th IEEE international wireless communications and mobile computing conference (IWCMC-2018) Zahoor S, Javaid N, Khan A, Ruqia B, Muhammad FJ, Zahid M (2018) A cloud-fog-based smart grid model for efficient resource utilization. In: 14th IEEE international wireless communications and mobile computing conference (IWCMC-2018)
38.
Zurück zum Zitat Chen SL, Chen YY, Kuo SH (2017) CLB: a novel load balancing architecture and algorithm for cloud services. Comput Electr Eng 58:154–160CrossRef Chen SL, Chen YY, Kuo SH (2017) CLB: a novel load balancing architecture and algorithm for cloud services. Comput Electr Eng 58:154–160CrossRef
39.
Zurück zum Zitat Xue Sh, Zhang Y, Xu X, Xing G, Xiang H, Ji S (2017) QET: a QoS-based energy-aware task scheduling method in cloud environment. Clust Comput 20(4):3199–3212CrossRef Xue Sh, Zhang Y, Xu X, Xing G, Xiang H, Ji S (2017) QET: a QoS-based energy-aware task scheduling method in cloud environment. Clust Comput 20(4):3199–3212CrossRef
40.
Zurück zum Zitat Sharma SCM, Rath AK (2017) Multi-Rumen anti-grazing approach of load balancing in cloud network. Int J Inf Technol 9(2):129–138 Sharma SCM, Rath AK (2017) Multi-Rumen anti-grazing approach of load balancing in cloud network. Int J Inf Technol 9(2):129–138
47.
Zurück zum Zitat Mangiatordi F, Pallotti E, Del Vecchio P, Leccese F (2012) Power consumption scheduling for residential buildings. In: Proceedings of the 2012 11th international conference on environment and electrical engineering (EEEIC), Venice, Italy. 18–25 May (2012), pp 926–930 Mangiatordi F, Pallotti E, Del Vecchio P, Leccese F (2012) Power consumption scheduling for residential buildings. In: Proceedings of the 2012 11th international conference on environment and electrical engineering (EEEIC), Venice, Italy. 18–25 May (2012), pp 926–930
48.
Zurück zum Zitat Atiewi S, Yussof S, Ezanee M, Almiani M (2016) A review energy-efficient task scheduling algorithms in cloud computing. In: Proceedings of the 2016 IEEE long island systems, applications and technology conference (LISAT), Farmingdale, NY, USA. 29 April, pp 1–6 Atiewi S, Yussof S, Ezanee M, Almiani M (2016) A review energy-efficient task scheduling algorithms in cloud computing. In: Proceedings of the 2016 IEEE long island systems, applications and technology conference (LISAT), Farmingdale, NY, USA. 29 April, pp 1–6
51.
Zurück zum Zitat Casavant T, Kuhl J (1988) A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans Softw Eng 14(2):141–154CrossRef Casavant T, Kuhl J (1988) A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans Softw Eng 14(2):141–154CrossRef
52.
Zurück zum Zitat Kwok Y-K, Ahmad I (1999) Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput Surv 31:406–471CrossRef Kwok Y-K, Ahmad I (1999) Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput Surv 31:406–471CrossRef
53.
Zurück zum Zitat Lin W, Zhu C, Li J, Liu B, Lian H (2015) Novel algorithms and equivalence optimisation for resource allocation in cloud computing. Int J Web Grid Serv 11(2):69–78CrossRef Lin W, Zhu C, Li J, Liu B, Lian H (2015) Novel algorithms and equivalence optimisation for resource allocation in cloud computing. Int J Web Grid Serv 11(2):69–78CrossRef
54.
Zurück zum Zitat Brauny TD, Siegely H, Becky N et al (2001) A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems. Parallel Distrib Comput 61(6):810–837CrossRef Brauny TD, Siegely H, Becky N et al (2001) A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems. Parallel Distrib Comput 61(6):810–837CrossRef
55.
Zurück zum Zitat Maheswaran M, Ali S, Siegel HJ, Hensgen D, Freund RF (1999) Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. J Parallel Distrib Comput 59(2):107–131CrossRef Maheswaran M, Ali S, Siegel HJ, Hensgen D, Freund RF (1999) Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. J Parallel Distrib Comput 59(2):107–131CrossRef
56.
Zurück zum Zitat Saher M, Metib A, Mazen J (2019) An advanced algorithm for load balancing in cloud computing using MEMA technique. Int J Innov Technol Explor Eng 8:36–41CrossRef Saher M, Metib A, Mazen J (2019) An advanced algorithm for load balancing in cloud computing using MEMA technique. Int J Innov Technol Explor Eng 8:36–41CrossRef
57.
Zurück zum Zitat Binh HTT, Anh TT, Son DB, Duc PA, Nguyen BM (2018) An evolutionary algorithm for solving task scheduling problem in cloud–fog computing environment. In: Proceedings of the SOICT 9th symposium on information and communication technology. Da Nang City, Vietnam, 6–7 December, pp 397–404 Binh HTT, Anh TT, Son DB, Duc PA, Nguyen BM (2018) An evolutionary algorithm for solving task scheduling problem in cloud–fog computing environment. In: Proceedings of the SOICT 9th symposium on information and communication technology. Da Nang City, Vietnam, 6–7 December, pp 397–404
58.
Zurück zum Zitat Bitam S, Zeadally S, Mellouk A (2017) Fog computing job scheduling optimization based on bees swarm. Enterp Inf Syst 12:373–397CrossRef Bitam S, Zeadally S, Mellouk A (2017) Fog computing job scheduling optimization based on bees swarm. Enterp Inf Syst 12:373–397CrossRef
59.
Zurück zum Zitat Gu L, Zeng D, Guo S, Barnawi A, Xiang Y (2017) Cost efficient resource management in fog computing supported medical cyber–physical system. IEEE Trans Emerg Top Comput 5:108–119CrossRef Gu L, Zeng D, Guo S, Barnawi A, Xiang Y (2017) Cost efficient resource management in fog computing supported medical cyber–physical system. IEEE Trans Emerg Top Comput 5:108–119CrossRef
60.
Zurück zum Zitat Deng R, Lu R, Lai C, Luan TH, Liang H (2016) Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J 3:1171–1181 Deng R, Lu R, Lai C, Luan TH, Liang H (2016) Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J 3:1171–1181
61.
Zurück zum Zitat Guo X, Singh R, Zhao T, Niu Z (2016) An index based task assignment policy for achieving optimal power-delay tradeoff in edge cloud systems. In: Proceedings of the 2016 IEEE international conference on communications (ICC). Kuala Lumpur, Malaysia, 23–27 May, pp 1–7 Guo X, Singh R, Zhao T, Niu Z (2016) An index based task assignment policy for achieving optimal power-delay tradeoff in edge cloud systems. In: Proceedings of the 2016 IEEE international conference on communications (ICC). Kuala Lumpur, Malaysia, 23–27 May, pp 1–7
62.
Zurück zum Zitat Ningning S, Chao G, Xingshuo A, Qiang Z (2016) Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun 13:156–164CrossRef Ningning S, Chao G, Xingshuo A, Qiang Z (2016) Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun 13:156–164CrossRef
63.
Zurück zum Zitat Oueis J, Strinati EC, Barbarossa S (2015) The fog balancing: load distribution for small cell cloud computing. In: Proceedings of the 2015 IEEE 81st vehicular technology conference (VTC Spring). Glasgow, UK, 11–14 May, pp 1–6 Oueis J, Strinati EC, Barbarossa S (2015) The fog balancing: load distribution for small cell cloud computing. In: Proceedings of the 2015 IEEE 81st vehicular technology conference (VTC Spring). Glasgow, UK, 11–14 May, pp 1–6
64.
Zurück zum Zitat Talaat FM, Ali SHA, Saleh AI (2019) Ali HA (2019) Effective load balancing strategy (ELBS) for real-time fog computing environment using fuzzy and probabilistic neural networks. J Netw Syst Manag 27:883–929CrossRef Talaat FM, Ali SHA, Saleh AI (2019) Ali HA (2019) Effective load balancing strategy (ELBS) for real-time fog computing environment using fuzzy and probabilistic neural networks. J Netw Syst Manag 27:883–929CrossRef
Metadaten
Titel
Effective scheduling algorithm for load balancing in fog environment using CNN and MPSO
verfasst von
Fatma M. Talaat
Hesham A. Ali
Mohamed S. Saraya
Ahmed I. Saleh
Publikationsdatum
19.01.2022
Verlag
Springer London
Erschienen in
Knowledge and Information Systems / Ausgabe 3/2022
Print ISSN: 0219-1377
Elektronische ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-021-01649-2

Weitere Artikel der Ausgabe 3/2022

Knowledge and Information Systems 3/2022 Zur Ausgabe

Premium Partner