Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2022

15.01.2022 | Technical Article

Effects of Graphene Nanoplatelets on the Microstructure, Mechanical Properties, and Corrosion Behavior of Spark Plasma Sintered Al + 20 vol.% (TiC + TiB2) Hybrid Composites

verfasst von: Seyed Majid Mirbagheri, Hamzeh Shahrajabian, Mahdi Rafiei

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main objective of this study is improvement of mechanical properties and corrosion behavior of Al + 20 vol.% (TiC + TiB2) hybrid composites containing various contents of GNPs (0.1, 0.5, and 1wt.%) prepared by SPS technique. The x-ray diffraction proved the formation of the prepared TiC + TiB2 powders. FE-SEM images demonstrated the homogeneous and uniform dispersion of the GNPs and TiC + TiB2 particles in the matrix. Young’s modulus and hardness were evaluated by the nano-indentation test. The results showed that the maximum hardness (4.79 GPa) and maximum Young’s modulus (137.8 GPa) were obtained for the composite sample containing 1 wt.% GNPs. Corrosion behavior was investigated by polarization and impedance tests. The results revealed that the sample containing 1 wt.% GNPs as reinforcement had the maximum corrosion resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. Fayomi, K. Babaremu and I. Akande, Mechanical Behaviour of Composite Materials in Metal, Int. J. Mech. Eng. Technol., 2019, 10(3), p 9–20. O. Fayomi, K. Babaremu and I. Akande, Mechanical Behaviour of Composite Materials in Metal, Int. J. Mech. Eng. Technol., 2019, 10(3), p 9–20.
2.
Zurück zum Zitat B. Xu and F. Guo, A Micromechanics Method for Transverse Creep Behavior Induced by Interface Diffusion in Unidirectional Fiber-Reinforced Metal Matrix Composites, Int. J. Solids Struct., 2019, 159, p 126–134.CrossRef B. Xu and F. Guo, A Micromechanics Method for Transverse Creep Behavior Induced by Interface Diffusion in Unidirectional Fiber-Reinforced Metal Matrix Composites, Int. J. Solids Struct., 2019, 159, p 126–134.CrossRef
3.
Zurück zum Zitat P. Sharma, D. Khanduja and S. Sharma, Tribological and Mechanical Behavior of Particulate Aluminum Matrix Composites, J. Reinf. Plast. Compos., 2014, 33(23), p 2192–2202.CrossRef P. Sharma, D. Khanduja and S. Sharma, Tribological and Mechanical Behavior of Particulate Aluminum Matrix Composites, J. Reinf. Plast. Compos., 2014, 33(23), p 2192–2202.CrossRef
4.
Zurück zum Zitat Obarijima CO, Okolie ST Application of Accelerometer in the Design and Adaptation of Active Suspension in Automobile. In: IOP Conference Series: Materials Science and Engineering, 2018. vol 1. IOP Publishing, p 012025 Obarijima CO, Okolie ST Application of Accelerometer in the Design and Adaptation of Active Suspension in Automobile. In: IOP Conference Series: Materials Science and Engineering, 2018. vol 1. IOP Publishing, p 012025
5.
Zurück zum Zitat J. Kim, H. Lim, J. Cho and C. Kim, Weldability During the Laser Lap Welding of Al 5052 Sheets, Arch. Mater. Sci. Eng., 2008, 31(2), p 113–116. J. Kim, H. Lim, J. Cho and C. Kim, Weldability During the Laser Lap Welding of Al 5052 Sheets, Arch. Mater. Sci. Eng., 2008, 31(2), p 113–116.
6.
Zurück zum Zitat P. Schulz, J. Berneder, D. Uffelmann, C. Zelger and C. Melzer, Advanced 5xxx-, 6xxx-and 7xxx-aluminium alloys for applications in automotive and consumer electronics, Materials science forum. Trans Tech Publ, 2011, p 451–454 P. Schulz, J. Berneder, D. Uffelmann, C. Zelger and C. Melzer, Advanced 5xxx-, 6xxx-and 7xxx-aluminium alloys for applications in automotive and consumer electronics, Materials science forum. Trans Tech Publ, 2011, p 451–454
7.
Zurück zum Zitat R. Sharma, S. Jhap, K. Kakkar, K. Kamboj and P. Sharma, A Review of the Aluminium Metal Matrix Composite and its Properties, Int. Res. J. Eng. Technol., 2017, 4(2), p 832–842. R. Sharma, S. Jhap, K. Kakkar, K. Kamboj and P. Sharma, A Review of the Aluminium Metal Matrix Composite and its Properties, Int. Res. J. Eng. Technol., 2017, 4(2), p 832–842.
8.
Zurück zum Zitat K.M. Ghauri, L. Ali, A. Ahmad, R. Ahmad, K.M. Din, I.A. Chaudhary and R.A. Karim, Synthesis and Characterization of Al/SiC Composite made by Stir Casting Method, Pak. J. Engg. & Appl. Sci., 2013, 12, p 102–110. K.M. Ghauri, L. Ali, A. Ahmad, R. Ahmad, K.M. Din, I.A. Chaudhary and R.A. Karim, Synthesis and Characterization of Al/SiC Composite made by Stir Casting Method, Pak. J. Engg. & Appl. Sci., 2013, 12, p 102–110.
9.
Zurück zum Zitat P.F. Mayuet Ares, L. Rodríguez-Parada, Á. Gómez-Parra and M. Batista Ponce, Characterization and Defect Analysis of Machined Regions in Al-SiC Metal Matrix Composites Using an Abrasive Water Jet Machining Process, Appl. Sci., 2020, 10(4), p 1512.CrossRef P.F. Mayuet Ares, L. Rodríguez-Parada, Á. Gómez-Parra and M. Batista Ponce, Characterization and Defect Analysis of Machined Regions in Al-SiC Metal Matrix Composites Using an Abrasive Water Jet Machining Process, Appl. Sci., 2020, 10(4), p 1512.CrossRef
10.
Zurück zum Zitat S. Singh and R. Singh, Effect of Process Parameters on Micro Hardness of Al–Al2O3 Composite Prepared Using an Alternative Reinforced Pattern in Fused Deposition Modelling Assisted Investment Casting, Robot. Computer-Integrat. Manuf., 2016, 37, p 162–169.CrossRef S. Singh and R. Singh, Effect of Process Parameters on Micro Hardness of Al–Al2O3 Composite Prepared Using an Alternative Reinforced Pattern in Fused Deposition Modelling Assisted Investment Casting, Robot. Computer-Integrat. Manuf., 2016, 37, p 162–169.CrossRef
11.
Zurück zum Zitat Q. Han, R. Setchi and S.L. Evans, Synthesis and Characterisation of Advanced Ball-Milled Al-Al2O3 Nanocomposites for Selective Laser Melting, Powder Technol., 2016, 297, p 183–192.CrossRef Q. Han, R. Setchi and S.L. Evans, Synthesis and Characterisation of Advanced Ball-Milled Al-Al2O3 Nanocomposites for Selective Laser Melting, Powder Technol., 2016, 297, p 183–192.CrossRef
12.
Zurück zum Zitat S. Jerome, B. Ravisankar, P.K. Mahato and S. Natarajan, Synthesis and Evaluation of Mechanical and High Temperature Tribological Properties of in-situ Al–TiC Composites, Tribol. Int., 2010, 43(11), p 2029–2036.CrossRef S. Jerome, B. Ravisankar, P.K. Mahato and S. Natarajan, Synthesis and Evaluation of Mechanical and High Temperature Tribological Properties of in-situ Al–TiC Composites, Tribol. Int., 2010, 43(11), p 2029–2036.CrossRef
13.
Zurück zum Zitat S. Mohapatra, A.K. Chaubey, D.K. Mishra and S.K. Singh, Fabrication of Al–TiC Composites by Hot Consolidation Technique: its Microstructure and Mechanical Properties, J. Market. Res., 2016, 5(2), p 117–122. S. Mohapatra, A.K. Chaubey, D.K. Mishra and S.K. Singh, Fabrication of Al–TiC Composites by Hot Consolidation Technique: its Microstructure and Mechanical Properties, J. Market. Res., 2016, 5(2), p 117–122.
14.
Zurück zum Zitat Z. Sadeghian, B. Lotfi, M. Enayati and P. Beiss, Microstructural and Mechanical Evaluation of Al–TiB2 Nanostructured Composite Fabricated by Mechanical Alloying, J. Alloy. Compd., 2011, 509(29), p 7758–7763.CrossRef Z. Sadeghian, B. Lotfi, M. Enayati and P. Beiss, Microstructural and Mechanical Evaluation of Al–TiB2 Nanostructured Composite Fabricated by Mechanical Alloying, J. Alloy. Compd., 2011, 509(29), p 7758–7763.CrossRef
15.
Zurück zum Zitat S. Suresh, N. Shenbag and V. Moorthi, Aluminium-Titanium Diboride (Al-TiB2) Metal Matrix Composites: Challenges and Opportunities, Procedia Eng., 2012, 38, p 89–97.CrossRef S. Suresh, N. Shenbag and V. Moorthi, Aluminium-Titanium Diboride (Al-TiB2) Metal Matrix Composites: Challenges and Opportunities, Procedia Eng., 2012, 38, p 89–97.CrossRef
16.
Zurück zum Zitat L. Zhang, Z. Wang, Q. Li, J. Wu, G. Shi, F. Qi and X. Zhou, Microtopography and Mechanical Properties of Vacuum Hot Pressing Al/B4C Composites, Ceram. Int., 2018, 44(3), p 3048–3055.CrossRef L. Zhang, Z. Wang, Q. Li, J. Wu, G. Shi, F. Qi and X. Zhou, Microtopography and Mechanical Properties of Vacuum Hot Pressing Al/B4C Composites, Ceram. Int., 2018, 44(3), p 3048–3055.CrossRef
17.
Zurück zum Zitat H. Alihosseini, K. Dehghani and J. Kamali, Microstructure Characterization, Mechanical Properties, Compressibility and Sintering Behavior of Al-B4C Nanocomposite Powders, Adv. Powder Technol., 2017, 28(9), p 2126–2134.CrossRef H. Alihosseini, K. Dehghani and J. Kamali, Microstructure Characterization, Mechanical Properties, Compressibility and Sintering Behavior of Al-B4C Nanocomposite Powders, Adv. Powder Technol., 2017, 28(9), p 2126–2134.CrossRef
18.
Zurück zum Zitat L.K. Singh, A. Bhadauria and T. Laha, Al-MWCNT Nanocomposite Synthesized via Spark Plasma Sintering: Effect of Powder Milling and Reinforcement Addition on Sintering Kinetics and Mechanical Properties, J. Market. Res., 2019, 8(1), p 503–512. L.K. Singh, A. Bhadauria and T. Laha, Al-MWCNT Nanocomposite Synthesized via Spark Plasma Sintering: Effect of Powder Milling and Reinforcement Addition on Sintering Kinetics and Mechanical Properties, J. Market. Res., 2019, 8(1), p 503–512.
19.
Zurück zum Zitat R. Pérez-Bustamante, C. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. Pérez-García and R. Martínez-Sánchez, Microstructural and Mechanical Characterization of Al–MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng., A, 2009, 502(1–2), p 159–163.CrossRef R. Pérez-Bustamante, C. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. Pérez-García and R. Martínez-Sánchez, Microstructural and Mechanical Characterization of Al–MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng., A, 2009, 502(1–2), p 159–163.CrossRef
20.
Zurück zum Zitat A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated Through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28.CrossRef A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated Through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28.CrossRef
21.
Zurück zum Zitat W. Yang, Q. Zhao, L. Xin, J. Qiao, J. Zou, P. Shao, Z. Yu, Q. Zhang and G. Wu, Microstructure and Mechanical Properties of Graphene Nanoplates Reinforced Pure Al Matrix Composites Prepared by Pressure Infiltration Method, J. Alloy. Compd., 2018, 732, p 748–758.CrossRef W. Yang, Q. Zhao, L. Xin, J. Qiao, J. Zou, P. Shao, Z. Yu, Q. Zhang and G. Wu, Microstructure and Mechanical Properties of Graphene Nanoplates Reinforced Pure Al Matrix Composites Prepared by Pressure Infiltration Method, J. Alloy. Compd., 2018, 732, p 748–758.CrossRef
22.
Zurück zum Zitat M.A. Awotunde, A.O. Adegbenjo, M.B. Shongwe and P.A. Olubambi, in Spark Plasma Sintering of Aluminium-Based Materials, ed. by P. Cavaliere. Spark Plasma Sintering of Materials, (Springer, Cham, 2019), p 191–218. M.A. Awotunde, A.O. Adegbenjo, M.B. Shongwe and P.A. Olubambi, in Spark Plasma Sintering of Aluminium-Based Materials, ed. by P. Cavaliere. Spark Plasma Sintering of Materials, (Springer, Cham, 2019), p 191–218.
23.
Zurück zum Zitat J. Schmidt, M. Boehling, U. Burkhardt and Y. Grin, Preparation of Titanium Diboride TiB2 by Spark Plasma Sintering at Slow Heating Rate, Sci. Technol. Adv. Mater., 2007, 8(5), p 376. CrossRef J. Schmidt, M. Boehling, U. Burkhardt and Y. Grin, Preparation of Titanium Diboride TiB2 by Spark Plasma Sintering at Slow Heating Rate, Sci. Technol. Adv. Mater., 2007, 8(5), p 376. CrossRef
24.
Zurück zum Zitat K. Niranjan and P. Lakshminarayanan, Dry Sliding Wear Behaviour of In Situ Al–TiB2 Composites, Mater. Des., 2013, 47, p 167–173. CrossRef K. Niranjan and P. Lakshminarayanan, Dry Sliding Wear Behaviour of In Situ Al–TiB2 Composites, Mater. Des., 2013, 47, p 167–173. CrossRef
25.
Zurück zum Zitat L. Lü, M. Lai, Y. Su, H. Teo and C. Feng, In Situ TiB2 Reinforced Al Alloy Composites, Scripta Mater., 2001, 45(9), p 1017–1023. CrossRef L. Lü, M. Lai, Y. Su, H. Teo and C. Feng, In Situ TiB2 Reinforced Al Alloy Composites, Scripta Mater., 2001, 45(9), p 1017–1023. CrossRef
26.
Zurück zum Zitat X. Dong, H. Youssef, Y. Zhang, S. Wang and S. Ji, High Performance Al/TiB2 Composites Fabricated by Nanoparticle Reinforcement and Cutting-Edge Super Vacuum Assisted Die Casting Process, Compos. Part B Eng., 2019, 177, p 107453. CrossRef X. Dong, H. Youssef, Y. Zhang, S. Wang and S. Ji, High Performance Al/TiB2 Composites Fabricated by Nanoparticle Reinforcement and Cutting-Edge Super Vacuum Assisted Die Casting Process, Compos. Part B Eng., 2019, 177, p 107453. CrossRef
27.
Zurück zum Zitat N. Abu-Warda, M. López, M. Escalera-Rodríguez, E. Otero and M. Utrilla, Corrosion Behavior of Mechanically Alloyed A6005 Aluminum Alloy Composite Reinforced with TiB2 Nanoparticles, Mater. Corros., 2020, 71(3), p 382–391. CrossRef N. Abu-Warda, M. López, M. Escalera-Rodríguez, E. Otero and M. Utrilla, Corrosion Behavior of Mechanically Alloyed A6005 Aluminum Alloy Composite Reinforced with TiB2 Nanoparticles, Mater. Corros., 2020, 71(3), p 382–391. CrossRef
28.
Zurück zum Zitat R. Geng, S.-Q. Jia, F. Qiu, Q.-L. Zhao and Q.-C. Jiang, Effects of Nanosized TiC and TiB2 Particles on the Corrosion Behavior of Al-Mg-Si Alloy, Corros. Sci., 2020, 167, p 108479. CrossRef R. Geng, S.-Q. Jia, F. Qiu, Q.-L. Zhao and Q.-C. Jiang, Effects of Nanosized TiC and TiB2 Particles on the Corrosion Behavior of Al-Mg-Si Alloy, Corros. Sci., 2020, 167, p 108479. CrossRef
29.
Zurück zum Zitat Y. Wang, P. Shen, R.-F. Guo, Z.-J. Hu and Q.-C. Jiang, Developing High Toughness and Strength Al/TiC Composites Using Ice-Templating and Pressure Infiltration, Ceram. Int., 2017, 43(4), p 3831–3838. CrossRef Y. Wang, P. Shen, R.-F. Guo, Z.-J. Hu and Q.-C. Jiang, Developing High Toughness and Strength Al/TiC Composites Using Ice-Templating and Pressure Infiltration, Ceram. Int., 2017, 43(4), p 3831–3838. CrossRef
30.
Zurück zum Zitat C. Saravanan, K. Saravanan, P. Sevvel and P. Sudharsan, Investigation and Evaluation of Mechanical Behaviour of Al-TiC Alloy, Mater. Today Proc., 2021, 37, p 1203–1207. CrossRef C. Saravanan, K. Saravanan, P. Sevvel and P. Sudharsan, Investigation and Evaluation of Mechanical Behaviour of Al-TiC Alloy, Mater. Today Proc., 2021, 37, p 1203–1207. CrossRef
31.
Zurück zum Zitat T. Albert, J. Sunil, A.S. Christopher, R. Jegan, P.A. Prabhu and M. Selvaganesan, Preparation and Characterization of Aluminium-Titanium Carbide (Al-TiC) Composite Using Powder Metallurgy, Mater. Today Proc., 2021, 37, p 1558–1561. CrossRef T. Albert, J. Sunil, A.S. Christopher, R. Jegan, P.A. Prabhu and M. Selvaganesan, Preparation and Characterization of Aluminium-Titanium Carbide (Al-TiC) Composite Using Powder Metallurgy, Mater. Today Proc., 2021, 37, p 1558–1561. CrossRef
32.
Zurück zum Zitat B. Dikici, F. Bedir and M. Gavgali, The Effect of High TiC Particle Content on the Tensile Cracking and Corrosion Behavior of Al–5Cu Matrix Composites, J. Compos. Mater., 2020, 54(13), p 1681–1690. CrossRef B. Dikici, F. Bedir and M. Gavgali, The Effect of High TiC Particle Content on the Tensile Cracking and Corrosion Behavior of Al–5Cu Matrix Composites, J. Compos. Mater., 2020, 54(13), p 1681–1690. CrossRef
33.
Zurück zum Zitat E.-S.M. Sherif, H.S. Abdo, K.A. Khalil and A.M. Nabawy, Effect of Titanium Carbide Content on the Corrosion Behavior of Al-TiC Composites Processed by High Energy Ball Mill, Int. J. Electrochem. Sci., 2016, 11(6), p 4632–4644. CrossRef E.-S.M. Sherif, H.S. Abdo, K.A. Khalil and A.M. Nabawy, Effect of Titanium Carbide Content on the Corrosion Behavior of Al-TiC Composites Processed by High Energy Ball Mill, Int. J. Electrochem. Sci., 2016, 11(6), p 4632–4644. CrossRef
34.
Zurück zum Zitat J. Nie, F. Wang, Y. Chen, Q. Mao, H. Yang, Z. Song, X. Liu and Y. Zhao, Microstructure and Corrosion Behavior of Al-TiB2/TiC Composites Processed by Hot Rolling, Results Phys., 2019, 14, p 102471. CrossRef J. Nie, F. Wang, Y. Chen, Q. Mao, H. Yang, Z. Song, X. Liu and Y. Zhao, Microstructure and Corrosion Behavior of Al-TiB2/TiC Composites Processed by Hot Rolling, Results Phys., 2019, 14, p 102471. CrossRef
35.
Zurück zum Zitat M. Hadian, H. Shahrajabian and M. Rafiei, Mechanical Properties and Microstructure of Al/(TiC+ TiB2) Composite Fabricated by Spark Plasma Sintering, Ceram. Int., 2019, 45(9), p 12088–12092. CrossRef M. Hadian, H. Shahrajabian and M. Rafiei, Mechanical Properties and Microstructure of Al/(TiC+ TiB2) Composite Fabricated by Spark Plasma Sintering, Ceram. Int., 2019, 45(9), p 12088–12092. CrossRef
36.
Zurück zum Zitat W. Yang, G. Chen, J. Qiao, S. Liu, R. Xiao, R. Dong, M. Hussain and G. Wu, Graphene Nanoflakes Reinforced Al-20Si Matrix Composites Prepared by Pressure Infiltration Method, Mater. Sci. Eng., A, 2017, 700, p 351–357. CrossRef W. Yang, G. Chen, J. Qiao, S. Liu, R. Xiao, R. Dong, M. Hussain and G. Wu, Graphene Nanoflakes Reinforced Al-20Si Matrix Composites Prepared by Pressure Infiltration Method, Mater. Sci. Eng., A, 2017, 700, p 351–357. CrossRef
37.
Zurück zum Zitat M. Khan, R. Ud-Din, A. Wadood, S.W. Husain, S. Akhtar and R.E. Aune, Physical and Mechanical Properties of Graphene Nanoplatelet-Reinforced Al6061-T6 Composites Processed by Spark Plasma Sintering, JOM, 2020, 72(6), p 2295–2304. CrossRef M. Khan, R. Ud-Din, A. Wadood, S.W. Husain, S. Akhtar and R.E. Aune, Physical and Mechanical Properties of Graphene Nanoplatelet-Reinforced Al6061-T6 Composites Processed by Spark Plasma Sintering, JOM, 2020, 72(6), p 2295–2304. CrossRef
38.
Zurück zum Zitat H. Zhang, C. Xu, W. Xiao, K. Ameyama and C. Ma, Enhanced Mechanical Properties of Al5083 Alloy with Graphene Nanoplates Prepared by Ball Milling and Hot Extrusion, Mater. Sci. Eng., A, 2016, 658, p 8–15. CrossRef H. Zhang, C. Xu, W. Xiao, K. Ameyama and C. Ma, Enhanced Mechanical Properties of Al5083 Alloy with Graphene Nanoplates Prepared by Ball Milling and Hot Extrusion, Mater. Sci. Eng., A, 2016, 658, p 8–15. CrossRef
39.
Zurück zum Zitat N. Akçamlı, B. Küçükelyas, C. Kaykılarlı and D. Uzunsoy, Investigation of Microstructural, Mechanical and Corrosion Properties of Graphene Nanoplatelets Reinforced Al Matrix Composites, Mater. Res. Express., 2019, 6(11), p 115627. CrossRef N. Akçamlı, B. Küçükelyas, C. Kaykılarlı and D. Uzunsoy, Investigation of Microstructural, Mechanical and Corrosion Properties of Graphene Nanoplatelets Reinforced Al Matrix Composites, Mater. Res. Express., 2019, 6(11), p 115627. CrossRef
40.
Zurück zum Zitat R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel and R. Martínez-Sánchez, Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminum Composites Synthesized by Mechanical Alloying, J. Alloy. Compd., 2014, 615, p S578–S582. CrossRef R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel and R. Martínez-Sánchez, Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminum Composites Synthesized by Mechanical Alloying, J. Alloy. Compd., 2014, 615, p S578–S582. CrossRef
41.
Zurück zum Zitat M. Rafiei, M. Salehi and M. Shamanian, Formation Mechanism of B4C–TiB2–TiC Ceramic Composite Produced by Mechanical Alloying of Ti–B4C Powders, Adv. Powder Technol., 2014, 25(6), p 1754–1760. CrossRef M. Rafiei, M. Salehi and M. Shamanian, Formation Mechanism of B4C–TiB2–TiC Ceramic Composite Produced by Mechanical Alloying of Ti–B4C Powders, Adv. Powder Technol., 2014, 25(6), p 1754–1760. CrossRef
42.
Zurück zum Zitat B. Wang and D. Shuang, Effect of Graphene Nanoplatelets on the Properties, Pore Structure and Microstructure of Cement Composites, Mater. Express, 2018, 8(5), p 407–416. CrossRef B. Wang and D. Shuang, Effect of Graphene Nanoplatelets on the Properties, Pore Structure and Microstructure of Cement Composites, Mater. Express, 2018, 8(5), p 407–416. CrossRef
43.
Zurück zum Zitat M.C. Şenel, M. Gürbüz and E. Koc, Fabrication and Characterization of Synergistic Al-SiC-GNPs Hybrid Composites, Compos. B Eng., 2018, 154, p 1–9. CrossRef M.C. Şenel, M. Gürbüz and E. Koc, Fabrication and Characterization of Synergistic Al-SiC-GNPs Hybrid Composites, Compos. B Eng., 2018, 154, p 1–9. CrossRef
44.
Zurück zum Zitat R. Arsenault and N. Shi, Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p 175–187. CrossRef R. Arsenault and N. Shi, Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p 175–187. CrossRef
45.
Zurück zum Zitat A. Saboori, M. Pavese, C. Badini and P. Fino, Microstructure and Thermal Conductivity of Al–Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques, Acta Metallurgica Sinica (Eng. Lett.), 2017, 30(7), p 675–687. CrossRef A. Saboori, M. Pavese, C. Badini and P. Fino, Microstructure and Thermal Conductivity of Al–Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques, Acta Metallurgica Sinica (Eng. Lett.), 2017, 30(7), p 675–687. CrossRef
46.
Zurück zum Zitat R.R. Raj, J. Yoganandh, M.S. Saravanan and S.S. Kumar, Effect of Graphene Addition on the Mechanical Characteristics of AA7075 Aluminium Nanocomposites, Carbon Lett., 2020, 31, p 1–12. R.R. Raj, J. Yoganandh, M.S. Saravanan and S.S. Kumar, Effect of Graphene Addition on the Mechanical Characteristics of AA7075 Aluminium Nanocomposites, Carbon Lett., 2020, 31, p 1–12.
47.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24(2), p 101–108. CrossRef M. Rashad, F. Pan, A. Tang and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24(2), p 101–108. CrossRef
48.
Zurück zum Zitat J.R. Macdonald, Impedance Spectroscopy, Ann. Biomed. Eng., 1992, 20(3), p 289–305. CrossRef J.R. Macdonald, Impedance Spectroscopy, Ann. Biomed. Eng., 1992, 20(3), p 289–305. CrossRef
49.
Zurück zum Zitat A.A. Javidparvar, R. Naderi and B. Ramezanzadeh, L-Cysteine Reduced/Functionalized Graphene Oxide Application as a Smart/Control Release Nanocarrier of Sustainable Cerium Ions for Epoxy Coating Anti-Corrosion Properties Improvement, J. Hazard. Mater., 2020, 389, p 122135. CrossRef A.A. Javidparvar, R. Naderi and B. Ramezanzadeh, L-Cysteine Reduced/Functionalized Graphene Oxide Application as a Smart/Control Release Nanocarrier of Sustainable Cerium Ions for Epoxy Coating Anti-Corrosion Properties Improvement, J. Hazard. Mater., 2020, 389, p 122135. CrossRef
50.
Zurück zum Zitat M. Shamir, M. Junaid, F.N. Khan, A.A. Taimoor and M.N. Baig, A Comparative Study of Electrochemical Corrosion Behavior in Laser and TIG Welded Ti–5Al–2.5 Sn Alloy, J. Mater. Res. Technol., 2019, 8(1), p 87–98. CrossRef M. Shamir, M. Junaid, F.N. Khan, A.A. Taimoor and M.N. Baig, A Comparative Study of Electrochemical Corrosion Behavior in Laser and TIG Welded Ti–5Al–2.5 Sn Alloy, J. Mater. Res. Technol., 2019, 8(1), p 87–98. CrossRef
51.
Zurück zum Zitat Z. Gao, D. Zhang, S. Jiang, Q. Zhang and X. Li, XPS Investigations on the Corrosion Mechanism of V (IV) Conversion Coatings on Hot-Dip Galvanized Steel, Corros. Sci., 2018, 139, p 163–171. CrossRef Z. Gao, D. Zhang, S. Jiang, Q. Zhang and X. Li, XPS Investigations on the Corrosion Mechanism of V (IV) Conversion Coatings on Hot-Dip Galvanized Steel, Corros. Sci., 2018, 139, p 163–171. CrossRef
52.
Zurück zum Zitat X.-j Zhang, F. Gao and Z.-y Liu, Effect of Sn on Corrosion Behavior of Ultra-Pure 17 Mass% Cr Ferritic Stainless Steels in Sulphuric Acid, J. Iron. Steel Res. Int., 2016, 23(10), p 1044–1053. CrossRef X.-j Zhang, F. Gao and Z.-y Liu, Effect of Sn on Corrosion Behavior of Ultra-Pure 17 Mass% Cr Ferritic Stainless Steels in Sulphuric Acid, J. Iron. Steel Res. Int., 2016, 23(10), p 1044–1053. CrossRef
53.
Zurück zum Zitat M. Rashad, F. Pan, Zh. Yu, M. Asif, H. Lin and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Progress Nat. Sci. Mater. Int., 2015, 25(5), p 460–470. CrossRef M. Rashad, F. Pan, Zh. Yu, M. Asif, H. Lin and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Progress Nat. Sci. Mater. Int., 2015, 25(5), p 460–470. CrossRef
54.
Zurück zum Zitat M. Saxena, O.P. Modi, A.H. Yegneswaran and P.K. Rohatgi, Corrosion Characteristics of Cast Aluminum Alloy—3 wt% Graphite Particulate Composites in Different Environments, Corros. Sci., 1987, 27, p 249. CrossRef M. Saxena, O.P. Modi, A.H. Yegneswaran and P.K. Rohatgi, Corrosion Characteristics of Cast Aluminum Alloy—3 wt% Graphite Particulate Composites in Different Environments, Corros. Sci., 1987, 27, p 249. CrossRef
55.
Zurück zum Zitat K. Kakaei, M.D. Esrafili and A. Ehsani, Graphene and anticorrosion properties, Interface science and technology. Elsevier, Hoboken, 2019, p 303–337 K. Kakaei, M.D. Esrafili and A. Ehsani, Graphene and anticorrosion properties, Interface science and technology. Elsevier, Hoboken, 2019, p 303–337
56.
Zurück zum Zitat M. Furko, Y. Jiang, T. Wilkins and C. Balázsi, Electrochemical and Morphological Investigation of Silver and Zinc Modified Calcium Phosphate Bioceramic Coatings on Metallic Implant Materials, Mater. Sci. Eng., C, 2016, 62, p 249–259. CrossRef M. Furko, Y. Jiang, T. Wilkins and C. Balázsi, Electrochemical and Morphological Investigation of Silver and Zinc Modified Calcium Phosphate Bioceramic Coatings on Metallic Implant Materials, Mater. Sci. Eng., C, 2016, 62, p 249–259. CrossRef
Metadaten
Titel
Effects of Graphene Nanoplatelets on the Microstructure, Mechanical Properties, and Corrosion Behavior of Spark Plasma Sintered Al + 20 vol.% (TiC + TiB2) Hybrid Composites
verfasst von
Seyed Majid Mirbagheri
Hamzeh Shahrajabian
Mahdi Rafiei
Publikationsdatum
15.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06498-2

Weitere Artikel der Ausgabe 5/2022

Journal of Materials Engineering and Performance 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.