Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 7/2022

04.11.2020 | Original Article

Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process

verfasst von: Sajib Aninda Dhar, Tamjid Us Sakib, Lutfun Naher Hilary

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purposes of this research were to investigate the competence of coconut fiber to produce biochar by slow pyrolysis process and analyze the effects of different pyrolysis temperatures on the yield and physicochemical properties of biochars. Coconut fiber biomass was subjected to slow pyrolysis process using a laboratory scale fixed bed reactor at six different temperatures ranging from 350 to 600 °C (at an interval of 50 °C). The slow pyrolysis process was carried out in an inert environment for 1 (one) hour at a constant heating rate of 10 °C/min. The physicochemical properties of biomass and obtained biochars were characterized by proximate analysis (VM, FC, ash), ultimate analysis (CHNSO), higher heating value (HHV), bulk density, BET surface area, pH, and electrical conductivity (EC). Functional groups and particle sizes of biomass and biochars were identified by FTIR and particle size distribution respectively. Surface morphology and pore distribution of the biochars were observed by SEM images. The pyrolysis temperature had a negative effect on biochar yield and reduced from 48.13 to 29.34% as the pyrolysis temperature increased from 350 to 600 °C. Fixed carbon, ash content, pH, organic carbon, specific surface area, EC, degree of aromaticity, and porosity of the biochars enhanced as the pyrolysis temperature rose from 350 to 600 °C. However, the volatile matter, VM/FC ratio, H/C ratio, HHV, bulk density, and particle sizes of biochars were negatively correlated with the pyrolysis temperatures. Higher pyrolysis temperatures increased aromatic C groups and recalcitrant characteristics, yielded smaller particles, and formed elongated and porous structures. The physicochemical properties of high-temperature biochars (500–600 °C) showed the potential to be used as soil amendments and an efficient tool for C sequestration and retention of nutrients, and water. The porous structures of high-temperature biochars can accommodate suitable soil-microorganism activities, increase water sorption, and increase soil density. Moreover, the high alkalinity of the biochars can assist to neutralize acidic soil and increases soil fertility and plant growth. On the contrary, low-temperature biochars (350–450 °C) are promising tools for solid fuels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tasim B, Masood T, Shah ZA, Arif M, Ullah A, Miraj G, Samiullah M (2019) Quality evaluation of biochar prepared from different agricultural residues. Sarhad J Agric 35(1):134–143 Tasim B, Masood T, Shah ZA, Arif M, Ullah A, Miraj G, Samiullah M (2019) Quality evaluation of biochar prepared from different agricultural residues. Sarhad J Agric 35(1):134–143
2.
Zurück zum Zitat Gaskin J, Steiner C, Harris K, Das K, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51(6):2061–2069CrossRef Gaskin J, Steiner C, Harris K, Das K, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51(6):2061–2069CrossRef
3.
Zurück zum Zitat Radlein DSA, Piskorz JK, Majerski PA (1997) Method of producing slow-release nitrogenous organic fertilizer from biomass. Google Patents Radlein DSA, Piskorz JK, Majerski PA (1997) Method of producing slow-release nitrogenous organic fertilizer from biomass. Google Patents
4.
Zurück zum Zitat Hunt J, DuPonte M, Sato D, Kawabata A (2010) The basics of biochar: a natural soil amendment. Soil Crop Manag 30(7):1–6 Hunt J, DuPonte M, Sato D, Kawabata A (2010) The basics of biochar: a natural soil amendment. Soil Crop Manag 30(7):1–6
5.
Zurück zum Zitat Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRef Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRef
6.
Zurück zum Zitat Gunarathne DS, Udugama IA, Jayawardena S, Gernaey KV, Mansouri SS, Narayana M (2019) Resource recovery from bio-based production processes in developing Asia. Sustain Prod Consum 17:196–214CrossRef Gunarathne DS, Udugama IA, Jayawardena S, Gernaey KV, Mansouri SS, Narayana M (2019) Resource recovery from bio-based production processes in developing Asia. Sustain Prod Consum 17:196–214CrossRef
7.
Zurück zum Zitat Esmeraldo MA, Gomes AC, Freitas JE, Fechine PB, Sombra AS, Corradini E, Mele G, Maffezzoli A, Mazzetto SE (2010) Dwarf-green coconut fibers: a versatile natural renewable raw bioresource. Treatment, morphology, and physicochemical properties. Bioresources 5(4):2478–2501 Esmeraldo MA, Gomes AC, Freitas JE, Fechine PB, Sombra AS, Corradini E, Mele G, Maffezzoli A, Mazzetto SE (2010) Dwarf-green coconut fibers: a versatile natural renewable raw bioresource. Treatment, morphology, and physicochemical properties. Bioresources 5(4):2478–2501
8.
Zurück zum Zitat Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481CrossRef Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481CrossRef
9.
Zurück zum Zitat Mimmo T, Panzacchi P, Baratieri M, Davies C, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus× giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157CrossRef Mimmo T, Panzacchi P, Baratieri M, Davies C, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus× giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157CrossRef
10.
Zurück zum Zitat Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag 1(2):289–303CrossRef Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag 1(2):289–303CrossRef
11.
Zurück zum Zitat Rees F, Simonnot M-O, Morel J-L (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65(1):149–161CrossRef Rees F, Simonnot M-O, Morel J-L (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65(1):149–161CrossRef
12.
Zurück zum Zitat Mollinedo J, Schumacher TE, Chintala R (2015) Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J Anal Appl Pyrolysis 114:100–108CrossRef Mollinedo J, Schumacher TE, Chintala R (2015) Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J Anal Appl Pyrolysis 114:100–108CrossRef
13.
Zurück zum Zitat Lee Y, Park J, Gang K, Ryu C, Yang W, Jung J, Hyun S (2013) Production and characterization of biochar from various biomass materials by slow pyrolysis. Technical Bulletin-Food and Fertilizer Technology Center 197(1):1–11 Lee Y, Park J, Gang K, Ryu C, Yang W, Jung J, Hyun S (2013) Production and characterization of biochar from various biomass materials by slow pyrolysis. Technical Bulletin-Food and Fertilizer Technology Center 197(1):1–11
14.
Zurück zum Zitat Bispo MD, Schneider JK, da Silva OD, Tomasini D, da Silva Maciel GP, Schena T, Onorevoli B, Bjerk TR, Jacques RA, Krause LC (2018) Production of activated biochar from coconut fiber for the removal of organic compounds from phenolic. J Environ Chem Eng 6(2):2743–2750CrossRef Bispo MD, Schneider JK, da Silva OD, Tomasini D, da Silva Maciel GP, Schena T, Onorevoli B, Bjerk TR, Jacques RA, Krause LC (2018) Production of activated biochar from coconut fiber for the removal of organic compounds from phenolic. J Environ Chem Eng 6(2):2743–2750CrossRef
15.
Zurück zum Zitat Liu Z, Han G (2015) Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–165CrossRef Liu Z, Han G (2015) Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–165CrossRef
16.
Zurück zum Zitat Shariff A, Aziz NSM, Saleh NM, Ruzali NSI (2016) The effect of feedstock type and slow pyrolysis temperature on biochar yield from coconut wastes. Int J Chem Mol Nucl Mater Metall Eng 10(12):1361–1365 Shariff A, Aziz NSM, Saleh NM, Ruzali NSI (2016) The effect of feedstock type and slow pyrolysis temperature on biochar yield from coconut wastes. Int J Chem Mol Nucl Mater Metall Eng 10(12):1361–1365
17.
Zurück zum Zitat Gonzaga MIS, Mackowiak C, de Almeida AQ, de Carvalho Junior JIT, Andrade KR (2018) Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena 162:414–420CrossRef Gonzaga MIS, Mackowiak C, de Almeida AQ, de Carvalho Junior JIT, Andrade KR (2018) Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena 162:414–420CrossRef
18.
Zurück zum Zitat Suman S, Gautam S (2017) Pyrolysis of coconut husk biomass: analysis of its biochar properties. Energy Sources Part A 39(8):761–767CrossRef Suman S, Gautam S (2017) Pyrolysis of coconut husk biomass: analysis of its biochar properties. Energy Sources Part A 39(8):761–767CrossRef
19.
Zurück zum Zitat Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11(23):6613–6621CrossRef Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11(23):6613–6621CrossRef
20.
Zurück zum Zitat Sonobe T, Pipatmanomai S, Worasuwannarak N (2006) Pyrolysis characteristics of Thai-agricultural residues of rice straw, rice husk, and corncob by TG-MS technique and kinetic analysis. In: Proceedings of the 2nd Joint International Conference on “Sustainable Energy and Environment (SEE’06). pp 21–23 Sonobe T, Pipatmanomai S, Worasuwannarak N (2006) Pyrolysis characteristics of Thai-agricultural residues of rice straw, rice husk, and corncob by TG-MS technique and kinetic analysis. In: Proceedings of the 2nd Joint International Conference on “Sustainable Energy and Environment (SEE’06). pp 21–23
21.
Zurück zum Zitat Madari BE, Maia CMBdF, Novotny EH (2012) Context and importance of biochar research. Pesq Agrop Brasileira 47(5):1–2CrossRef Madari BE, Maia CMBdF, Novotny EH (2012) Context and importance of biochar research. Pesq Agrop Brasileira 47(5):1–2CrossRef
22.
Zurück zum Zitat Singh H, Sapra PK, Sidhu BS (2013) Evaluation and characterization of different biomass residues through proximate & ultimate analysis and heating value. Asian J Eng Appl Technol 2(2):6–10 Singh H, Sapra PK, Sidhu BS (2013) Evaluation and characterization of different biomass residues through proximate & ultimate analysis and heating value. Asian J Eng Appl Technol 2(2):6–10
23.
Zurück zum Zitat Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115CrossRef Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115CrossRef
24.
Zurück zum Zitat Adeeyo O, Oresegun OM, Oladimeji TE (2015) Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res (AJER) 4(4):14–19 Adeeyo O, Oresegun OM, Oladimeji TE (2015) Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res (AJER) 4(4):14–19
25.
Zurück zum Zitat Ververis C, Georghiou K, Danielidis D, Hatzinikolaou D, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98(2):296–301CrossRef Ververis C, Georghiou K, Danielidis D, Hatzinikolaou D, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98(2):296–301CrossRef
26.
Zurück zum Zitat Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284CrossRef Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284CrossRef
27.
Zurück zum Zitat Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131CrossRef Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131CrossRef
28.
Zurück zum Zitat Bazargan A, Rough SL, McKay G (2014) Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy 70:489–497CrossRef Bazargan A, Rough SL, McKay G (2014) Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy 70:489–497CrossRef
29.
Zurück zum Zitat Kakitis A, Ancans D, Nulle I (2014) Evaluation of combustion properties of biomass mixtures. Eng Rural Dev 423–427 Kakitis A, Ancans D, Nulle I (2014) Evaluation of combustion properties of biomass mixtures. Eng Rural Dev 423–427
30.
Zurück zum Zitat Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27(6):653–669CrossRef Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27(6):653–669CrossRef
31.
Zurück zum Zitat Tao G, Lestander TA, Geladi P, Xiong S (2012) Biomass properties in association with plant species and assortments I: a synthesis based on literature data of energy properties. Renew Sust Energ Rev 16(5):3481–3506CrossRef Tao G, Lestander TA, Geladi P, Xiong S (2012) Biomass properties in association with plant species and assortments I: a synthesis based on literature data of energy properties. Renew Sust Energ Rev 16(5):3481–3506CrossRef
32.
Zurück zum Zitat Liu X, Yu W (2006) Evaluating the thermal stability of high performance fibers by TGA. J Appl Polym Sci 99(3):937–944CrossRef Liu X, Yu W (2006) Evaluating the thermal stability of high performance fibers by TGA. J Appl Polym Sci 99(3):937–944CrossRef
33.
Zurück zum Zitat Tikhonov NA, Arkhangelsky IV, Belyaev SS, Matveev AT (2009) Carbonization of polymeric nonwoven materials. Thermochim Acta 486(1–2):66–70CrossRef Tikhonov NA, Arkhangelsky IV, Belyaev SS, Matveev AT (2009) Carbonization of polymeric nonwoven materials. Thermochim Acta 486(1–2):66–70CrossRef
34.
Zurück zum Zitat Zhang T, Jin J, Yang S, Hu D, Li G, Jiang J (2009) Synthesis and characterization of fluorinated PBO with high thermal stability and low dielectric constant. J Macromol Sci Part B 48(6):1114–1124CrossRef Zhang T, Jin J, Yang S, Hu D, Li G, Jiang J (2009) Synthesis and characterization of fluorinated PBO with high thermal stability and low dielectric constant. J Macromol Sci Part B 48(6):1114–1124CrossRef
35.
Zurück zum Zitat Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef
36.
Zurück zum Zitat Bulmău C, Mărculescu C, Badea A, Apostol T (2010) Pyrolysis parameters influencing the bio-char generation from wooden biomass. University Politehnica of Bucharest Scientific Bulletin-Serie C: Electrical Engineering 72(1):29–38 Bulmău C, Mărculescu C, Badea A, Apostol T (2010) Pyrolysis parameters influencing the bio-char generation from wooden biomass. University Politehnica of Bucharest Scientific Bulletin-Serie C: Electrical Engineering 72(1):29–38
37.
Zurück zum Zitat Song G, Shen L, Xiao J (2011) Estimating specific chemical exergy of biomass from basic analysis data. Ind Eng Chem Res 50(16):9758–9766CrossRef Song G, Shen L, Xiao J (2011) Estimating specific chemical exergy of biomass from basic analysis data. Ind Eng Chem Res 50(16):9758–9766CrossRef
38.
Zurück zum Zitat Mohammad I, Abakr Y, Kabir F, Yusuf S, Alshareef I, Chin S (2015) Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources 10(4):6457–6478CrossRef Mohammad I, Abakr Y, Kabir F, Yusuf S, Alshareef I, Chin S (2015) Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources 10(4):6457–6478CrossRef
39.
Zurück zum Zitat Zhang Y, Ma Z, Zhang Q, Wang J, Ma Q, Yang Y, Luo X, Zhang W (2017) Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources 12(3):4652–4669 Zhang Y, Ma Z, Zhang Q, Wang J, Ma Q, Yang Y, Luo X, Zhang W (2017) Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources 12(3):4652–4669
40.
Zurück zum Zitat Hill CA, Khalil HA, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crop Prod 8(1):53–63CrossRef Hill CA, Khalil HA, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crop Prod 8(1):53–63CrossRef
41.
Zurück zum Zitat Geethamma V, Mathew KT, Lakshminarayanan R, Thomas S (1998) Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer 39(6–7):1483–1491CrossRef Geethamma V, Mathew KT, Lakshminarayanan R, Thomas S (1998) Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer 39(6–7):1483–1491CrossRef
42.
Zurück zum Zitat Kelley SS, Rowell RM, Davis M, Jurich CK, Ibach R (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass Bioenergy 27(1):77–88CrossRef Kelley SS, Rowell RM, Davis M, Jurich CK, Ibach R (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass Bioenergy 27(1):77–88CrossRef
43.
Zurück zum Zitat Xueyong Z, Zhe Y, Huifen L, Xianzhi L, Jianchao H (2018) Effect of soil organic matter on adsorption and insecticidal activity of toxins from Bacillus thuringiensis. Pedosphere 28(2):341–349CrossRef Xueyong Z, Zhe Y, Huifen L, Xianzhi L, Jianchao H (2018) Effect of soil organic matter on adsorption and insecticidal activity of toxins from Bacillus thuringiensis. Pedosphere 28(2):341–349CrossRef
44.
Zurück zum Zitat Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strateg Glob Chang 11(2):403–427CrossRef Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strateg Glob Chang 11(2):403–427CrossRef
45.
Zurück zum Zitat Nair VD, Nair P, Dari B, Freitas AM, Chatterjee N, Pinheiro FM (2017) Biochar in the agroecosystem–climate-change–sustainability nexus. Front Plant Sci 8:2051CrossRef Nair VD, Nair P, Dari B, Freitas AM, Chatterjee N, Pinheiro FM (2017) Biochar in the agroecosystem–climate-change–sustainability nexus. Front Plant Sci 8:2051CrossRef
46.
Zurück zum Zitat Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol Fertil Soils 35(4):219–230CrossRef Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol Fertil Soils 35(4):219–230CrossRef
47.
Zurück zum Zitat Joseph S, Camps-Arbestain M, Lin Y, Munroe P, Chia C, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh B (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515CrossRef Joseph S, Camps-Arbestain M, Lin Y, Munroe P, Chia C, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh B (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515CrossRef
48.
Zurück zum Zitat Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87(2):151–157CrossRef Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87(2):151–157CrossRef
49.
Zurück zum Zitat Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708CrossRef Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708CrossRef
50.
Zurück zum Zitat Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525CrossRef Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525CrossRef
51.
Zurück zum Zitat Domingues RR, Trugilho PF, Silva CA, de Melo ICN, Melo LC, Magriotis ZM, Sanchez-Monedero MA (2017) Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One 12(5):e0176884CrossRef Domingues RR, Trugilho PF, Silva CA, de Melo ICN, Melo LC, Magriotis ZM, Sanchez-Monedero MA (2017) Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One 12(5):e0176884CrossRef
52.
Zurück zum Zitat Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301CrossRef Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301CrossRef
53.
Zurück zum Zitat Denyes MJ, Parisien MA, Rutter A, Zeeb BA (2014) Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites. JoVE (J Vis Exp) (93):e52183 Denyes MJ, Parisien MA, Rutter A, Zeeb BA (2014) Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites. JoVE (J Vis Exp) (93):e52183
54.
Zurück zum Zitat Mukherjee A, Zimmerman A, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255CrossRef Mukherjee A, Zimmerman A, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255CrossRef
55.
Zurück zum Zitat Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458CrossRef Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458CrossRef
56.
Zurück zum Zitat Luo L, Xu C, Chen Z, Zhang S (2015) Properties of biomass-derived biochars: combined effects of operating conditions and biomass types. Bioresour Technol 192:83–89CrossRef Luo L, Xu C, Chen Z, Zhang S (2015) Properties of biomass-derived biochars: combined effects of operating conditions and biomass types. Bioresour Technol 192:83–89CrossRef
57.
Zurück zum Zitat Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653CrossRef Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653CrossRef
58.
Zurück zum Zitat Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43(10):2127–2134CrossRef Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43(10):2127–2134CrossRef
59.
Zurück zum Zitat Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497CrossRef Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497CrossRef
60.
Zurück zum Zitat Jha P, Biswas A, Lakaria B, Rao AS (2010) Biochar in agriculture–prospects and related implications. Curr Sci 1218–1225 Jha P, Biswas A, Lakaria B, Rao AS (2010) Biochar in agriculture–prospects and related implications. Curr Sci 1218–1225
61.
Zurück zum Zitat Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83(9):1262–1267CrossRef Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83(9):1262–1267CrossRef
62.
Zurück zum Zitat Guo M, Shen Y, He Z (2012) Poultry litter-based biochar: preparation, characterization, and utilization. Applied research of animal manure: challenges and opportunities beyond the adverse environmental concerns Nova Sci, New York:169–202 Guo M, Shen Y, He Z (2012) Poultry litter-based biochar: preparation, characterization, and utilization. Applied research of animal manure: challenges and opportunities beyond the adverse environmental concerns Nova Sci, New York:169–202
63.
Zurück zum Zitat Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177(1):16–25CrossRef Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177(1):16–25CrossRef
64.
Zurück zum Zitat Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv Mater Sci Eng 2014:1–12CrossRef Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv Mater Sci Eng 2014:1–12CrossRef
65.
Zurück zum Zitat Noor NM, Shariff A, Abdullah N, Aziz NSM (2019) Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malays J Fundam Appl Sci 15(2):153–158CrossRef Noor NM, Shariff A, Abdullah N, Aziz NSM (2019) Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malays J Fundam Appl Sci 15(2):153–158CrossRef
66.
Zurück zum Zitat Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology, 1st edition. Earthscan Publications Ltd, London, pp 183-206 Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology, 1st edition.  Earthscan Publications Ltd, London, pp 183-206
67.
Zurück zum Zitat Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253CrossRef Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253CrossRef
68.
Zurück zum Zitat Cybulak M, Sokolowska Z, Boguta P (2016) Hygroscopic moisture content of podzolic soil with biochar. Acta Agrophysica 23 (4) Cybulak M, Sokolowska Z, Boguta P (2016) Hygroscopic moisture content of podzolic soil with biochar. Acta Agrophysica 23 (4)
69.
Zurück zum Zitat Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(1):1–9CrossRef Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(1):1–9CrossRef
70.
Zurück zum Zitat Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das K, Ahmedna M, Rehrah D, Watts DW, Busscher WJ (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das K, Ahmedna M, Rehrah D, Watts DW, Busscher WJ (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci
71.
Zurück zum Zitat Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143CrossRef Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143CrossRef
72.
Zurück zum Zitat Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276CrossRef Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276CrossRef
73.
Zurück zum Zitat Ding Y, Liu Y-X, Wu W-X, Shi D-Z, Yang M, Zhong Z-K (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut 213(1–4):47–55CrossRef Ding Y, Liu Y-X, Wu W-X, Shi D-Z, Yang M, Zhong Z-K (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut 213(1–4):47–55CrossRef
74.
Zurück zum Zitat Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde (Textbook of soil science). Spektrum Verlag, Heidelberg Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde (Textbook of soil science). Spektrum Verlag, Heidelberg
76.
Zurück zum Zitat Rehrah D, Reddy M, Novak J, Bansode R, Schimmel KA, Yu J, Watts D, Ahmedna M (2014) Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J Anal Appl Pyrolysis 108:301–309CrossRef Rehrah D, Reddy M, Novak J, Bansode R, Schimmel KA, Yu J, Watts D, Ahmedna M (2014) Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J Anal Appl Pyrolysis 108:301–309CrossRef
77.
Zurück zum Zitat Ding W, Dong X, Ime IM, Gao B, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74CrossRef Ding W, Dong X, Ime IM, Gao B, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74CrossRef
78.
Zurück zum Zitat Malhi S, Nyborg M, Harapiak J (1998) Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil Tillage Res 48(1–2):91–101CrossRef Malhi S, Nyborg M, Harapiak J (1998) Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil Tillage Res 48(1–2):91–101CrossRef
79.
Zurück zum Zitat Mary GS, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agric 5(1):43–53CrossRef Mary GS, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agric 5(1):43–53CrossRef
80.
Zurück zum Zitat Liu X-H, Zhang X-C (2012) Effect of biochar on pH of alkaline soils in the Loess Plateau: results from incubation experiments. Int J Agric Biol 14(5) Liu X-H, Zhang X-C (2012) Effect of biochar on pH of alkaline soils in the Loess Plateau: results from incubation experiments. Int J Agric Biol 14(5)
81.
Zurück zum Zitat Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72(2):279–287CrossRef Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72(2):279–287CrossRef
82.
Zurück zum Zitat Huang Z-K, Lü Q-F, Lin Q, Cheng X (2012) Microstructure, properties and lignin-based modification of wood–ceramics from rice husk and coal tar pitch. J Inorg Organomet Polym Mater 22(5):1113–1121CrossRef Huang Z-K, Lü Q-F, Lin Q, Cheng X (2012) Microstructure, properties and lignin-based modification of wood–ceramics from rice husk and coal tar pitch. J Inorg Organomet Polym Mater 22(5):1113–1121CrossRef
83.
Zurück zum Zitat Byrne CE, Nagle DC (1997) Carbonization of wood for advanced materials applications. Carbon 35(2):259–266CrossRef Byrne CE, Nagle DC (1997) Carbonization of wood for advanced materials applications. Carbon 35(2):259–266CrossRef
84.
Zurück zum Zitat Bansal R, Jean-Baptiste D, Fritz S (1988) Active carbon Marcel Dekker Inc. New York Bansal R, Jean-Baptiste D, Fritz S (1988) Active carbon Marcel Dekker Inc. New York
85.
Zurück zum Zitat Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730CrossRef Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730CrossRef
86.
Zurück zum Zitat Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13(9):1561–1572CrossRef Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13(9):1561–1572CrossRef
87.
Zurück zum Zitat Tomczyk A, Boguta P, Sokołowska Z (2019) Biochar efficiency in copper removal from Haplic soils. Int J Environ Sci Technol 16(8):4899–4912CrossRef Tomczyk A, Boguta P, Sokołowska Z (2019) Biochar efficiency in copper removal from Haplic soils. Int J Environ Sci Technol 16(8):4899–4912CrossRef
88.
Zurück zum Zitat Fernández RG, García CP, Lavín AG, de las Heras JLB (2012) Study of main combustion characteristics for biomass fuels used in boilers. Fuel Process Technol 103:16–26CrossRef Fernández RG, García CP, Lavín AG, de las Heras JLB (2012) Study of main combustion characteristics for biomass fuels used in boilers. Fuel Process Technol 103:16–26CrossRef
89.
Zurück zum Zitat Downie A, Crosky A, Munroe P, Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32 Downie A, Crosky A, Munroe P, Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32
90.
Zurück zum Zitat Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428CrossRef Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428CrossRef
91.
Zurück zum Zitat Gao Y, Yue Q, Gao B, Sun Y, Wang W, Li Q, Wang Y (2013) Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption. Chem Eng J 217:345–353CrossRef Gao Y, Yue Q, Gao B, Sun Y, Wang W, Li Q, Wang Y (2013) Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption. Chem Eng J 217:345–353CrossRef
92.
Zurück zum Zitat Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12(6):e0179079CrossRef Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12(6):e0179079CrossRef
93.
Zurück zum Zitat Briones MJI (2014) Soil fauna and soil functions: a jigsaw puzzle. Front Environ Sci 2:7CrossRef Briones MJI (2014) Soil fauna and soil functions: a jigsaw puzzle. Front Environ Sci 2:7CrossRef
94.
Zurück zum Zitat Weyers SL, Spokas KA (2011) Impact of biochar on earthworm populations: a review Appl Environ Soil Sci 2011 Weyers SL, Spokas KA (2011) Impact of biochar on earthworm populations: a review Appl Environ Soil Sci 2011
95.
Zurück zum Zitat Mierzwa-Hersztek M, Gondek K, Baran A (2016) Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl Soil Ecol 105(1):144–150CrossRef Mierzwa-Hersztek M, Gondek K, Baran A (2016) Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl Soil Ecol 105(1):144–150CrossRef
96.
Zurück zum Zitat Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(9):2461–2466CrossRef Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(9):2461–2466CrossRef
97.
Zurück zum Zitat Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS One 11(6):e0156894CrossRef Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS One 11(6):e0156894CrossRef
98.
Zurück zum Zitat Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57(5):459–465CrossRef Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57(5):459–465CrossRef
99.
Zurück zum Zitat Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21):11770–11778CrossRef Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21):11770–11778CrossRef
100.
Zurück zum Zitat Peng X, Ye L, Wang C, Zhou H, Sun B (2011) Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112(2):159–166CrossRef Peng X, Ye L, Wang C, Zhou H, Sun B (2011) Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112(2):159–166CrossRef
101.
Zurück zum Zitat Lee JW, Kidder M, Evans BR, Paik S, Buchanan Iii A, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974CrossRef Lee JW, Kidder M, Evans BR, Paik S, Buchanan Iii A, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974CrossRef
102.
Zurück zum Zitat Duong VT, Khanh NM, Nguyen NTH, Phi NN, Duc NT, Xo DH (2017) Impact of biochar on the water holding capacity and moisture of basalt and grey soil. J Sci Ho Chi Minh City Open Univ 7(2):36–43 Duong VT, Khanh NM, Nguyen NTH, Phi NN, Duc NT, Xo DH (2017) Impact of biochar on the water holding capacity and moisture of basalt and grey soil. J Sci Ho Chi Minh City Open Univ 7(2):36–43
103.
Zurück zum Zitat Ghani WAWAK, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, Rashid U, Ala’a H (2013) Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind Crop Prod 44:18–24CrossRef Ghani WAWAK, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, Rashid U, Ala’a H (2013) Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind Crop Prod 44:18–24CrossRef
104.
Zurück zum Zitat Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis 80(1):118–125CrossRef Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis 80(1):118–125CrossRef
105.
Zurück zum Zitat Valenzuela-Calahorro C, Bernalte-Garcia A, Gomez-Serrano V, Bernalte-García MJ (1987) Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood. J Anal Appl Pyrolysis 12(1):61–70CrossRef Valenzuela-Calahorro C, Bernalte-Garcia A, Gomez-Serrano V, Bernalte-García MJ (1987) Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood. J Anal Appl Pyrolysis 12(1):61–70CrossRef
106.
Zurück zum Zitat Chen J, Li S, Liang C, Xu Q, Li Y, Qin H, Fuhrmann JJ (2017) Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ 574:24–33CrossRef Chen J, Li S, Liang C, Xu Q, Li Y, Qin H, Fuhrmann JJ (2017) Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ 574:24–33CrossRef
107.
Zurück zum Zitat Masiello CA, Dugan B, Brewer CE, Spokas KA, Novak JM, Liu Z, Sorrenti G (2015) Biochar effects on soil hydrology. In: Biochar for environmental management. Routledge, pp. 575–594 Masiello CA, Dugan B, Brewer CE, Spokas KA, Novak JM, Liu Z, Sorrenti G (2015) Biochar effects on soil hydrology. In: Biochar for environmental management. Routledge, pp. 575–594
108.
Zurück zum Zitat Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81(4):687–711CrossRef Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81(4):687–711CrossRef
109.
Zurück zum Zitat Gąsior D, Tic WJ (2017) Application of the biochar-based technologies as the way of realization of the sustainable development strategy. Econ Environ Stud 17(43):597–611CrossRef Gąsior D, Tic WJ (2017) Application of the biochar-based technologies as the way of realization of the sustainable development strategy. Econ Environ Stud 17(43):597–611CrossRef
Metadaten
Titel
Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process
verfasst von
Sajib Aninda Dhar
Tamjid Us Sakib
Lutfun Naher Hilary
Publikationsdatum
04.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 7/2022
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-01116-y

Weitere Artikel der Ausgabe 7/2022

Biomass Conversion and Biorefinery 7/2022 Zur Ausgabe