Skip to main content
Erschienen in: Microsystem Technologies 2/2020

24.07.2019 | Technical Paper

Effects of various loading on the performance of MEMS cantilever beam for in-field tuning of sensors and actuators for high temperature and harsh environment applications

verfasst von: Manoj Kumar Dounkal, R. K. Bhan, Navin Kumar

Erschienen in: Microsystem Technologies | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MEMS devices require active mechanism for tuning in field operation because post fabrication, design parameters may change due to residual stress, fabrication imperfections, temperature etc. Application of axial compressive (C) or tensile forces (T) allows one to implement this tuning. Effects of C and T forces, stress gradient (SG) and transverse loading is analyzed for futuristic materials like Gallium Nitride (GaN) and Silicon Carbide (SiC) for use in high temperatures and harsh environments. The effects of above forces on pull in voltage (VPI), bandwidth (BW) and resonance frequency (RF) are analyzed. Results for Aluminum cantilever beam show, that VPI decreases by ~ 1.2 times at low beam lengths of 200 µm and about 5 times at higher length of 800 µm when T force is changed to C under loading. Similar trends are holding for GaN and SiC except that VPI scales up in proportion to material’s Young’s modulus E. An analytical relations of VPI versus E and Poisson’s ratio‘ν’ are predicted. Effect of SG is also studied and it is found that although SG affects VPI within 10% range, application of axial C or T forces further change it within 20% range. Comparison of analytical results for VPI with Coventorware software shows a better agreement for low loading of 10% compared to full loading of 100%. Also, Log–Log plot of VPI versus L can be used to estimate the contribution of charge re-distribution and fringing field. Furthermore, BW decreases by 16 Hz when C is applied and increases by 66 Hz when T is applied for Aluminum cantilever with 400 µm length and 50 µm width. Similarly, RF decreases by 165 Hz in C and increases by 623 Hz for T loading. The predictions of our model agree well with experimental and FEM results (within 4.54% and 6.46% respectively).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alcheikh N, Abdullah AM, Hafiz A, Younis MI (2017) Tunable clamped-guided arch resonators using electrostatically induced axial loads. Micromachines 8:14CrossRef Alcheikh N, Abdullah AM, Hafiz A, Younis MI (2017) Tunable clamped-guided arch resonators using electrostatically induced axial loads. Micromachines 8:14CrossRef
Zurück zum Zitat Ballestra A, Somà A, Pavanello R (2008) Experimental-numerical comparison of the cantilever MEMS frequency shift in presence of a residual stress gradient. Sensors 8:767–783CrossRef Ballestra A, Somà A, Pavanello R (2008) Experimental-numerical comparison of the cantilever MEMS frequency shift in presence of a residual stress gradient. Sensors 8:767–783CrossRef
Zurück zum Zitat Beléndez T, Neipp C, Beléndez A (2002) Large and small deflections of a cantilever beam. Eur J Phys 23:371–379CrossRef Beléndez T, Neipp C, Beléndez A (2002) Large and small deflections of a cantilever beam. Eur J Phys 23:371–379CrossRef
Zurück zum Zitat Chen YC, Hsu WH, Cheng SH, Cheng YT (2012) A flexible, non-intrusive power sensor tag for the electricity monitoring of two-wire household appliances MEMS. Paris, FRANCE, pp 620–623 Chen YC, Hsu WH, Cheng SH, Cheng YT (2012) A flexible, non-intrusive power sensor tag for the electricity monitoring of two-wire household appliances MEMS. Paris, FRANCE, pp 620–623
Zurück zum Zitat Fang W, Wickert JA (1996) Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J Micromech Microeng 6:301–309CrossRef Fang W, Wickert JA (1996) Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J Micromech Microeng 6:301–309CrossRef
Zurück zum Zitat Jiang L (2009) A review of silicon carbide development in MEMS applications. Int J Comput Mater Sci Surf Eng 2(3/4):227–242 Jiang L (2009) A review of silicon carbide development in MEMS applications. Int J Comput Mater Sci Surf Eng 2(3/4):227–242
Zurück zum Zitat Krishnan G, Kshirsagar CU, Ananthasuresh GK, Bhat N (2007) Micromachined high resolution accelerometers. J Indian Inst Sci 87:331–361 Krishnan G, Kshirsagar CU, Ananthasuresh GK, Bhat N (2007) Micromachined high resolution accelerometers. J Indian Inst Sci 87:331–361
Zurück zum Zitat Leland ES, White RM, Wright PK (2006) Energy scavenging power sources for household electrical monitoring. In: Power generation and energy conversion applications Berkeley, USA pp 165–168 Leland ES, White RM, Wright PK (2006) Energy scavenging power sources for household electrical monitoring. In: Power generation and energy conversion applications Berkeley, USA pp 165–168
Zurück zum Zitat Lin L, Yun W (1998) MEMS pressure sensors for aerospace applications. In: Aerospace conference proceedings, pp 429–436 Lin L, Yun W (1998) MEMS pressure sensors for aerospace applications. In: Aerospace conference proceedings, pp 429–436
Zurück zum Zitat Lishchynska M, Cordero N, Slattery O, O’Mahony C (2006) Spring constant models for analysis and design of MEMS plates on straight or meander tethers. Sens Lett 4:200–205CrossRef Lishchynska M, Cordero N, Slattery O, O’Mahony C (2006) Spring constant models for analysis and design of MEMS plates on straight or meander tethers. Sens Lett 4:200–205CrossRef
Zurück zum Zitat Mahalik NP (2008) Principle and applications of MEMS: a review. Int J Manuf Technol Manag 13:324–343CrossRef Mahalik NP (2008) Principle and applications of MEMS: a review. Int J Manuf Technol Manag 13:324–343CrossRef
Zurück zum Zitat Mamillaa VR, Chakradhar KS (2014) Micro machining for micro electro mechanical systems (MEMS). Proc Mater Sci 6:1170–1177CrossRef Mamillaa VR, Chakradhar KS (2014) Micro machining for micro electro mechanical systems (MEMS). Proc Mater Sci 6:1170–1177CrossRef
Zurück zum Zitat Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromechanical Syst 6:107–118CrossRef Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromechanical Syst 6:107–118CrossRef
Zurück zum Zitat Pamidighantam S, Puers R, Baert K, Tilmans HA (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 12:458–464CrossRef Pamidighantam S, Puers R, Baert K, Tilmans HA (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 12:458–464CrossRef
Zurück zum Zitat Rebeiz GM (2003) RF MEMS theory, design and technology. Wiley, New York Rebeiz GM (2003) RF MEMS theory, design and technology. Wiley, New York
Zurück zum Zitat Roark RJ, Young WC (2008) Formulas for stress and strain, chapter 8. McGraw-Hill, New York, p 259, 270 Roark RJ, Young WC (2008) Formulas for stress and strain, chapter 8. McGraw-Hill, New York, p 259, 270
Zurück zum Zitat Selvakumar A, Najafi K (1998) A high-sensitivity -axis capacitive silicon microaccelerometer with a torsional suspension. J Microelectromechanical Syst 7:192–200CrossRef Selvakumar A, Najafi K (1998) A high-sensitivity -axis capacitive silicon microaccelerometer with a torsional suspension. J Microelectromechanical Syst 7:192–200CrossRef
Zurück zum Zitat Sharma J, Das Gupta A (2009) Effect of stress on the pull-in voltage of membranes for MEMS application. J Micromech Microeng 19:1–7CrossRef Sharma J, Das Gupta A (2009) Effect of stress on the pull-in voltage of membranes for MEMS application. J Micromech Microeng 19:1–7CrossRef
Zurück zum Zitat Shkel AM (2001) Smart MEMS: micro-structures with error-suppression and self-calibration control capabilities. In: Proceedings of the American control conference Arlington, pp 1208–1213 Shkel AM (2001) Smart MEMS: micro-structures with error-suppression and self-calibration control capabilities. In: Proceedings of the American control conference Arlington, pp 1208–1213
Zurück zum Zitat Stonasa AR, Turnerb KL, DenBaars SP, Hua EL (2003) Development of gallium nitride-based MEMS structures. In: The 12th international conference on solid slate sensors, actuators and microsystems. Boston, pp 1156–1159 Stonasa AR, Turnerb KL, DenBaars SP, Hua EL (2003) Development of gallium nitride-based MEMS structures. In: The 12th international conference on solid slate sensors, actuators and microsystems. Boston, pp 1156–1159
Zurück zum Zitat Walraven JA (2003) Introduction to applications and industries for microelectromechanical systems (MEMS). In: ITC international test conference, IEEE pp 674–680 Walraven JA (2003) Introduction to applications and industries for microelectromechanical systems (MEMS). In: ITC international test conference, IEEE pp 674–680
Zurück zum Zitat Yang B, Lee C, Kotlanka RK, Lim JX (2010) A MEMS rotary comb mechanism forharvesting the kinetic energy of planarvibrations. J Micromech Microeng 20:065017CrossRef Yang B, Lee C, Kotlanka RK, Lim JX (2010) A MEMS rotary comb mechanism forharvesting the kinetic energy of planarvibrations. J Micromech Microeng 20:065017CrossRef
Zurück zum Zitat Yeow T-W, Law KE, Goldenberg A (2001) MEMS optical switches. IEEE Commun Mag 39:158–163CrossRef Yeow T-W, Law KE, Goldenberg A (2001) MEMS optical switches. IEEE Commun Mag 39:158–163CrossRef
Zurück zum Zitat Zhang G, Gaspar J, Conde V (2005) Electrostatically actuated polymer microresonators. Appl Phys Lett 87:1–3 Zhang G, Gaspar J, Conde V (2005) Electrostatically actuated polymer microresonators. Appl Phys Lett 87:1–3
Zurück zum Zitat Zhang W-M, Meng G, Chen DI (2007) Stability, nonlinearity and reliability of electrostatically actuated MEMS devices. Sensors 7:760–796CrossRef Zhang W-M, Meng G, Chen DI (2007) Stability, nonlinearity and reliability of electrostatically actuated MEMS devices. Sensors 7:760–796CrossRef
Metadaten
Titel
Effects of various loading on the performance of MEMS cantilever beam for in-field tuning of sensors and actuators for high temperature and harsh environment applications
verfasst von
Manoj Kumar Dounkal
R. K. Bhan
Navin Kumar
Publikationsdatum
24.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04551-8

Weitere Artikel der Ausgabe 2/2020

Microsystem Technologies 2/2020 Zur Ausgabe

Neuer Inhalt