Skip to main content
Erschienen in: Engineering with Computers 5/2023

01.12.2022 | Original Article

Efficient mesh-free modeling of liquid droplet impact on elastic surfaces

verfasst von: Xiangwei Dong, Guanan Hao, Yanxin Liu

Erschienen in: Engineering with Computers | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The impact of liquid droplets on flexible substrates is a common phenomenon in applications, such as plant leaves repelling raindrops and piezoelectric sensors harvest droplet energy. It involves the coupling of free surface flow, elasticity and surface/interface with large deformations that are difficult to simulate using traditional numerical methods. In this study, a novel fluid–flexible structure interaction model is established based on the smoothed particle hydrodynamics (SPH) method. The droplet is described by a weakly compressible (WC) SPH formulation, and the flexible substrate is described by the total Lagrangian (TL) SPH formulation and Mindlin–Reissner shell theory using one layer of particles. Surface tension and wetting effects are simulated by an additional negative pressure term that creates attractive forces among fluid particles, and appropriate kernel functions are selected to eliminate stress instability owing to droplet spreading and retraction. The proposed model is applied to simulate the dynamic process of the droplet impact on hydrophilic and super-hydrophobic cantilever thin plates. The interaction of the droplet and thin plate is investigated under various conditions including stiffness, Weber number, and wettability. Predicted phenomena such as the springboard effect, droplet morphology, plate deformation, and vibration are consistent with experimental observations. The modeling strategy using the TL-SPH shell formulation and free surface WC-SPH formulation showed improved computational efficiency for 3D simulations. Nonlinear behaviors such as droplet spreading, splashing, and large deflection of the substrate, can be effectively reproduced, which demonstrates the potential of SPH in simulating such problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mangili S, Antonini C, Marengo M, Amirfazli A (2012) Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter 8(39):10045–10054 Mangili S, Antonini C, Marengo M, Amirfazli A (2012) Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter 8(39):10045–10054
2.
Zurück zum Zitat Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM, Style RW, Castrejón-Pita AA (2016) It’s harder to splash on soft solids. Phys Rev Lett 117(18):184502 Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM, Style RW, Castrejón-Pita AA (2016) It’s harder to splash on soft solids. Phys Rev Lett 117(18):184502
3.
Zurück zum Zitat Chen N, Chen H, Amirfazli A (2017) Drop impact onto a thin film: Miscibility effect. Phys Fluids 29(9):092106 Chen N, Chen H, Amirfazli A (2017) Drop impact onto a thin film: Miscibility effect. Phys Fluids 29(9):092106
4.
Zurück zum Zitat Ha NS, Truong QT, Goo NS, Park HC (2013) Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir Biomim 8:046008 Ha NS, Truong QT, Goo NS, Park HC (2013) Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir Biomim 8:046008
5.
Zurück zum Zitat Gart S, Mates JE, Megaridis CM et al (2015) Droplet impacting a cantilever: A leaf-raindrop system[J]. Phys Rev Appl 3(4):044019 Gart S, Mates JE, Megaridis CM et al (2015) Droplet impacting a cantilever: A leaf-raindrop system[J]. Phys Rev Appl 3(4):044019
6.
Zurück zum Zitat Helseth LE, Wen HZ (2017) Evaluation of the energy generation potential of rain cells. Energy 119:472–482 Helseth LE, Wen HZ (2017) Evaluation of the energy generation potential of rain cells. Energy 119:472–482
7.
Zurück zum Zitat Dong X, Zhu H, Yang X (2015) Characterization of droplet impact and deposit formation on leaf surfaces. Pest Manag Sci 71(2):302–308 Dong X, Zhu H, Yang X (2015) Characterization of droplet impact and deposit formation on leaf surfaces. Pest Manag Sci 71(2):302–308
8.
Zurück zum Zitat Weisensee PB, Ma J, Shin YH et al (2017) Droplet impact on vibrating superhydrophobic surfaces. Phys Rev Fluids 2(10):103601 Weisensee PB, Ma J, Shin YH et al (2017) Droplet impact on vibrating superhydrophobic surfaces. Phys Rev Fluids 2(10):103601
9.
Zurück zum Zitat Aria AI, Gharib M (2014) Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. Langmuir 30(23):6780–6790 Aria AI, Gharib M (2014) Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. Langmuir 30(23):6780–6790
10.
Zurück zum Zitat Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405(6788):772–775 Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405(6788):772–775
11.
Zurück zum Zitat Vasileiou T, Gerber J, Prautzsch J et al (2016) Superhydrophobicity enhancement through substrate flexibility. Proc Natl Acad Sci 113(47):13307–13312 Vasileiou T, Gerber J, Prautzsch J et al (2016) Superhydrophobicity enhancement through substrate flexibility. Proc Natl Acad Sci 113(47):13307–13312
12.
Zurück zum Zitat Huang X, Dong X, Li J et al (2019) Droplet impact induced large deflection of a cantilever. Phys Fluids 31(6):062106 Huang X, Dong X, Li J et al (2019) Droplet impact induced large deflection of a cantilever. Phys Fluids 31(6):062106
13.
Zurück zum Zitat Kim JH, Rothstein JP, Shang JK (2018) Dynamics of a flexible superhydrophobic surface during a drop impact. Phys Fluids 30:072102 Kim JH, Rothstein JP, Shang JK (2018) Dynamics of a flexible superhydrophobic surface during a drop impact. Phys Fluids 30:072102
14.
Zurück zum Zitat Chen H, Zhang X, Garcia BB et al (2019) Drop impact onto a cantilever beam: behavior of the lamella and force measurement. Interfac Phenomena Heat Transfer 7:1 Chen H, Zhang X, Garcia BB et al (2019) Drop impact onto a cantilever beam: behavior of the lamella and force measurement. Interfac Phenomena Heat Transfer 7:1
15.
Zurück zum Zitat Dong X, Huang X, Liu J (2019) Modeling and simulation of droplet impact on elastic beams based on SPH. Eur J Mech-A/Solids 75:237–257MathSciNetMATH Dong X, Huang X, Liu J (2019) Modeling and simulation of droplet impact on elastic beams based on SPH. Eur J Mech-A/Solids 75:237–257MathSciNetMATH
16.
Zurück zum Zitat Guo Y, Wei L, Liang G et al (2014) Simulation of droplet impact on liquid film with CLSVOF. Int Commun Heat Mass Transfer 53:26–33 Guo Y, Wei L, Liang G et al (2014) Simulation of droplet impact on liquid film with CLSVOF. Int Commun Heat Mass Transfer 53:26–33
17.
Zurück zum Zitat Tanguy S, Berlemont A (2005) Application of a level set method for simulation of droplet collisions. Int J Multiph Flow 31(9):1015–1035MATH Tanguy S, Berlemont A (2005) Application of a level set method for simulation of droplet collisions. Int J Multiph Flow 31(9):1015–1035MATH
18.
Zurück zum Zitat Muradoglu M, Tasoglu S (2010) A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput Fluids 39(4):615–625MathSciNetMATH Muradoglu M, Tasoglu S (2010) A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput Fluids 39(4):615–625MathSciNetMATH
19.
Zurück zum Zitat Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85(11–14):879–890 Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85(11–14):879–890
20.
Zurück zum Zitat Suchde P, Kuhnert J (2019) A meshfree generalized finite difference method for surface PDEs. Comput Math Appl 78(8):2789–2805MathSciNetMATH Suchde P, Kuhnert J (2019) A meshfree generalized finite difference method for surface PDEs. Comput Math Appl 78(8):2789–2805MathSciNetMATH
21.
Zurück zum Zitat Fu ZJ, Xie ZY, Ji SY et al (2020) Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures. Ocean Eng 195:106736 Fu ZJ, Xie ZY, Ji SY et al (2020) Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures. Ocean Eng 195:106736
22.
Zurück zum Zitat Suchde P, Kuhnert J, Tiwari S (2018) On meshfree GFDM solvers for the incompressible Navier–Stokes equations. Comput Fluids 165:1–12MathSciNetMATH Suchde P, Kuhnert J, Tiwari S (2018) On meshfree GFDM solvers for the incompressible Navier–Stokes equations. Comput Fluids 165:1–12MathSciNetMATH
23.
Zurück zum Zitat Ma T, Chen D, Sun H et al (2021) Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria. Eur J Mech-B/Fluids 88:123–134MathSciNetMATH Ma T, Chen D, Sun H et al (2021) Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria. Eur J Mech-B/Fluids 88:123–134MathSciNetMATH
24.
Zurück zum Zitat Wang L, Zhang R, Zhang X et al (2017) Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluid Nanofluid 21(4):61 Wang L, Zhang R, Zhang X et al (2017) Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluid Nanofluid 21(4):61
25.
Zurück zum Zitat Gao S, Liao Q, Liu W et al (2018) Nanodroplets impact on rough surfaces: a simulation and theoretical study. Langmuir 34(20):5910–5917 Gao S, Liao Q, Liu W et al (2018) Nanodroplets impact on rough surfaces: a simulation and theoretical study. Langmuir 34(20):5910–5917
26.
Zurück zum Zitat Liu Q, Sun Z, Sun Y et al (2022) Symmetric boundary condition for the MPS method with surface tension model. Comput Fluids 235:105283MathSciNetMATH Liu Q, Sun Z, Sun Y et al (2022) Symmetric boundary condition for the MPS method with surface tension model. Comput Fluids 235:105283MathSciNetMATH
27.
Zurück zum Zitat Liu MB, Zhang ZL, Feng DL (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60(3):513–529MathSciNetMATH Liu MB, Zhang ZL, Feng DL (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60(3):513–529MathSciNetMATH
28.
Zurück zum Zitat Chen JK, Beraun JE, Jih CJ (1999) Completeness of corrective smoothed particle method for linear elastodynamics. Comput Mech 24(4):273–285MATH Chen JK, Beraun JE, Jih CJ (1999) Completeness of corrective smoothed particle method for linear elastodynamics. Comput Mech 24(4):273–285MATH
29.
Zurück zum Zitat Huang C, Lei JM, Liu MB et al (2015) A kernel gradient free (KGF) SPH method. Int J Numer Meth Fluids 78(11):691–707MathSciNet Huang C, Lei JM, Liu MB et al (2015) A kernel gradient free (KGF) SPH method. Int J Numer Meth Fluids 78(11):691–707MathSciNet
30.
Zurück zum Zitat Wang L, Xu F, Yang Y (2021) An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng Anal Boundary Elem 133:286–302MathSciNetMATH Wang L, Xu F, Yang Y (2021) An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng Anal Boundary Elem 133:286–302MathSciNetMATH
31.
Zurück zum Zitat Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeMATH Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeMATH
32.
Zurück zum Zitat Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng 55:136–147 Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng 55:136–147
33.
Zurück zum Zitat Liu MB, Shao J, Li H (2013) Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J Hydrodyn 25(5):673–682 Liu MB, Shao J, Li H (2013) Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J Hydrodyn 25(5):673–682
34.
Zurück zum Zitat Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198(33–36):2785–2795MATH Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198(33–36):2785–2795MATH
35.
Zurück zum Zitat Abbas K, Hitoshi G, Hosein F et al (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164MathSciNetMATH Abbas K, Hitoshi G, Hosein F et al (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164MathSciNetMATH
36.
Zurück zum Zitat Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1):253–275MathSciNetMATH Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1):253–275MathSciNetMATH
37.
Zurück zum Zitat Yang XF, Peng SL, Liu MB (2014) A new kernel function for SPH with applications to free surface flows. Appl Math Model 38(15–16):3822–3833MathSciNetMATH Yang XF, Peng SL, Liu MB (2014) A new kernel function for SPH with applications to free surface flows. Appl Math Model 38(15–16):3822–3833MathSciNetMATH
38.
Zurück zum Zitat Becker M, Teschner M. Weakly compressible SPH for free surface flows[C]//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 2007: 209-217. Becker M, Teschner M. Weakly compressible SPH for free surface flows[C]//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 2007: 209-217.
39.
Zurück zum Zitat Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MATH Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MATH
40.
Zurück zum Zitat Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580MathSciNetMATH Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580MathSciNetMATH
41.
Zurück zum Zitat Shadloo MS, Zainali A, Yildiz M et al (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Meth Eng 89(8):939–956MathSciNetMATH Shadloo MS, Zainali A, Yildiz M et al (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Meth Eng 89(8):939–956MathSciNetMATH
42.
Zurück zum Zitat Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26(3):331–362MATH Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26(3):331–362MATH
43.
Zurück zum Zitat Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells-part II. two-dimensional shells. Comput Methods Appl. Mech. Eng. 27(2):167–181MATH Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells-part II. two-dimensional shells. Comput Methods Appl. Mech. Eng. 27(2):167–181MATH
44.
Zurück zum Zitat Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetMATH Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetMATH
45.
Zurück zum Zitat Breinlinger T, Polfer P, Hashibon A et al (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27MATH Breinlinger T, Polfer P, Hashibon A et al (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27MATH
46.
Zurück zum Zitat Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Meth Fluids 33(3):333–353MATH Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Meth Fluids 33(3):333–353MATH
47.
Zurück zum Zitat Zhang M, Zhang S, Zhang H et al (2012) Simulation of surface-tension-driven interfacial flow with smoothed particle hydrodynamics method. Comput Fluids 59:61–71MathSciNetMATH Zhang M, Zhang S, Zhang H et al (2012) Simulation of surface-tension-driven interfacial flow with smoothed particle hydrodynamics method. Comput Fluids 59:61–71MathSciNetMATH
48.
Zurück zum Zitat Li L, Shen L, Nguyen GD et al (2018) A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput Mech 62(5):1071–1085MathSciNetMATH Li L, Shen L, Nguyen GD et al (2018) A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput Mech 62(5):1071–1085MathSciNetMATH
49.
Zurück zum Zitat Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134MathSciNetMATH Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134MathSciNetMATH
50.
Zurück zum Zitat Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311MATH Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311MATH
51.
Zurück zum Zitat Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662MATH Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662MATH
52.
Zurück zum Zitat Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408MathSciNetMATH Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408MathSciNetMATH
53.
Zurück zum Zitat Swegle J W, Attaway S W, Heinstein M W, et al. An analysis of smoothed particle hydrodynamics[R]. Sandia National Labs., Albuquerque, NM (United States), 1994. Swegle J W, Attaway S W, Heinstein M W, et al. An analysis of smoothed particle hydrodynamics[R]. Sandia National Labs., Albuquerque, NM (United States), 1994.
54.
Zurück zum Zitat Balsara DS (1995) Von Neumann stability analysis of smoothed particle hydrodynamics—Suggestions for optimal algorithms. J Comput Phys 121(2):357–372MathSciNetMATH Balsara DS (1995) Von Neumann stability analysis of smoothed particle hydrodynamics—Suggestions for optimal algorithms. J Comput Phys 121(2):357–372MathSciNetMATH
55.
Zurück zum Zitat Belytschko T, Guo Y, Kam Liu W et al (2000) A unified stability analysis of meshless particle methods. Int J Numer Meth Eng 48(9):1359–1400MathSciNetMATH Belytschko T, Guo Y, Kam Liu W et al (2000) A unified stability analysis of meshless particle methods. Int J Numer Meth Eng 48(9):1359–1400MathSciNetMATH
56.
Zurück zum Zitat Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193(12–14):1035–1063MathSciNetMATH Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193(12–14):1035–1063MathSciNetMATH
57.
Zurück zum Zitat Maurel B, Combescure A (2008) An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Meth Eng 76:949–971MathSciNetMATH Maurel B, Combescure A (2008) An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Meth Eng 76:949–971MathSciNetMATH
58.
Zurück zum Zitat Ming FR, Zhang A, Cao XY (2013) A robust shell element in meshfree SPH method. Acta Mech Sin 29(2):241–255MathSciNetMATH Ming FR, Zhang A, Cao XY (2013) A robust shell element in meshfree SPH method. Acta Mech Sin 29(2):241–255MathSciNetMATH
59.
Zurück zum Zitat Lin J, Naceur H, Coutellier D et al (2014) Efficient mesh-less SPH method for the numerical modeling of thick shell structures undergoing large deformations. Int J Non-Linear Mech 65:1–13 Lin J, Naceur H, Coutellier D et al (2014) Efficient mesh-less SPH method for the numerical modeling of thick shell structures undergoing large deformations. Int J Non-Linear Mech 65:1–13
60.
Zurück zum Zitat Yang X, Liu M, Peng S (2014) Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput Fluids 92:199–208MathSciNetMATH Yang X, Liu M, Peng S (2014) Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput Fluids 92:199–208MathSciNetMATH
61.
Zurück zum Zitat Yang XF, Liu MB (2012) An improvement for stress instability in smoothed particle hydrodynamics (in Chinese). Acta Phys Sin 61:224701 Yang XF, Liu MB (2012) An improvement for stress instability in smoothed particle hydrodynamics (in Chinese). Acta Phys Sin 61:224701
62.
Zurück zum Zitat Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155:263–284MathSciNetMATH Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155:263–284MathSciNetMATH
63.
Zurück zum Zitat Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:026301 Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:026301
64.
Zurück zum Zitat Liu MB, Chang JZ, Liu HT et al (2011) Modeling of contact angles and wetting effects with particle methods. Int J Comput Methods 8(04):637–651 Liu MB, Chang JZ, Liu HT et al (2011) Modeling of contact angles and wetting effects with particle methods. Int J Comput Methods 8(04):637–651
65.
Zurück zum Zitat Lin J. Nonlinear transient analysis of isotropic and composite shell structures under dynamic loading by SPH method[D]. Université de Technologie de Compiègne, 2014. Lin J. Nonlinear transient analysis of isotropic and composite shell structures under dynamic loading by SPH method[D]. Université de Technologie de Compiègne, 2014.
66.
Zurück zum Zitat Upadhyay G, Kumar V, Bhardwaj R (2021) Bouncing droplets on an elastic, superhydrophobic cantilever beam. Phys Fluids 33(4):042104 Upadhyay G, Kumar V, Bhardwaj R (2021) Bouncing droplets on an elastic, superhydrophobic cantilever beam. Phys Fluids 33(4):042104
67.
Zurück zum Zitat Clanet C, Béguin C, Richard D et al (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208MATH Clanet C, Béguin C, Richard D et al (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208MATH
68.
Zurück zum Zitat Soto D, De Lariviere AB, Boutillon X et al (2014) The force of impacting rain. Soft Matter 10(27):4929–4934 Soto D, De Lariviere AB, Boutillon X et al (2014) The force of impacting rain. Soft Matter 10(27):4929–4934
69.
Zurück zum Zitat Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62(4):4968 Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62(4):4968
70.
Zurück zum Zitat Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417(6891):811–811 Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417(6891):811–811
Metadaten
Titel
Efficient mesh-free modeling of liquid droplet impact on elastic surfaces
verfasst von
Xiangwei Dong
Guanan Hao
Yanxin Liu
Publikationsdatum
01.12.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 5/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01762-y

Weitere Artikel der Ausgabe 5/2023

Engineering with Computers 5/2023 Zur Ausgabe

Neuer Inhalt