Skip to main content
Erschienen in: Journal of Scientific Computing 1/2018

01.09.2017

Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

verfasst von: Huangxin Chen, Shuyu Sun, Tao Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adams, R.: Sobolev Spaces. Academic Press, New York (1975)MATH Adams, R.: Sobolev Spaces. Academic Press, New York (1975)MATH
2.
Zurück zum Zitat Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)MathSciNetCrossRefMATH Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATH Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATH
4.
Zurück zum Zitat Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63, 716–744 (2015)MathSciNetCrossRefMATH Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63, 716–744 (2015)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)MathSciNetCrossRefMATH Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Codina, R., Blasco, J.: Stabilized nite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Eng. 182, 277–300 (2000)CrossRefMATH Codina, R., Blasco, J.: Stabilized nite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Eng. 182, 277–300 (2000)CrossRefMATH
8.
Zurück zum Zitat Daly, B.J., Harlow, F.H., Shannon, J.P., Welch, J.E.: The MAC Method, Technical Report LA-3425, Los Alamos Scientific Laboratory, University of California (1965) Daly, B.J., Harlow, F.H., Shannon, J.P., Welch, J.E.: The MAC Method, Technical Report LA-3425, Los Alamos Scientific Laboratory, University of California (1965)
10.
Zurück zum Zitat Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefMATH Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefMATH
11.
Zurück zum Zitat Goda, K.: A multistep technique with implicit divergerence schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)CrossRefMATH Goda, K.: A multistep technique with implicit divergerence schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)CrossRefMATH
12.
Zurück zum Zitat Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)MathSciNetCrossRefMATH Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)MathSciNetCrossRefMATH Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefMATH Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Gustafsson, B., Nilsson, J.: Boundary conditions and estimates for the steady Stokes equations on staggered grids. J. Sci. Comput. 15, 29–59 (2000)MathSciNetCrossRefMATH Gustafsson, B., Nilsson, J.: Boundary conditions and estimates for the steady Stokes equations on staggered grids. J. Sci. Comput. 15, 29–59 (2000)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)MathSciNetCrossRefMATH Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefMATH Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Heister, T., Olshanskii, M.A., Rebholz, L.G.: Unconditional long-time stability of a velocity-vorticity method for the 2D Navier–Stokes equations. Numer. Math. 135, 143–167 (2017)MathSciNetCrossRefMATH Heister, T., Olshanskii, M.A., Rebholz, L.G.: Unconditional long-time stability of a velocity-vorticity method for the 2D Navier–Stokes equations. Numer. Math. 135, 143–167 (2017)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23, 750–777 (1986)MathSciNetCrossRefMATH Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23, 750–777 (1986)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)MathSciNetCrossRefMATH Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Kanschat, G.: Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Int. J. Numer. Methods Fluids 56, 941–950 (2008)MathSciNetCrossRefMATH Kanschat, G.: Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Int. J. Numer. Methods Fluids 56, 941–950 (2008)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)MathSciNetCrossRefMATH Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)MathSciNetCrossRefMATH Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)MathSciNetCrossRefMATH Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Lebedev, V.L.: Difference analogues of orthogonal decompositions, fundamental differential operators and certain boundary-value problems of mathematical physics. Z. Vycisl. Mat. i Mat. Fiz. 4, 449–465 (1964)MathSciNet Lebedev, V.L.: Difference analogues of orthogonal decompositions, fundamental differential operators and certain boundary-value problems of mathematical physics. Z. Vycisl. Mat. i Mat. Fiz. 4, 449–465 (1964)MathSciNet
26.
Zurück zum Zitat Li, J., Sun, S.: The superconvergence phenomenon and proof of the MAC scheme for the Stokes equations on non-uniform rectangular meshes. J. Sci. Comput. 65, 341–362 (2015)MathSciNetCrossRefMATH Li, J., Sun, S.: The superconvergence phenomenon and proof of the MAC scheme for the Stokes equations on non-uniform rectangular meshes. J. Sci. Comput. 65, 341–362 (2015)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Li, M., Tang, T., Fornberg, B.: A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151 (1995)MathSciNetCrossRefMATH Li, M., Tang, T., Fornberg, B.: A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151 (1995)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Liu, J.-G., Liu, J., Pego, R.: Stability and convergence of efficient Navier–Stokes solvers via a commutator estimate. Commun. Pure Appl. Math. 60, 1443–1487 (2007)MathSciNetCrossRefMATH Liu, J.-G., Liu, J., Pego, R.: Stability and convergence of efficient Navier–Stokes solvers via a commutator estimate. Commun. Pure Appl. Math. 60, 1443–1487 (2007)MathSciNetCrossRefMATH
29.
Zurück zum Zitat McKee, S., Tomé, M.F., Ferreira, V.G., Cuminato, J.A., Castelo, A., Sousa, F.S., Mangiavacchi, N.: The MAC method. Comput. Fluids 37, 907–930 (2008)MathSciNetCrossRefMATH McKee, S., Tomé, M.F., Ferreira, V.G., Cuminato, J.A., Castelo, A., Sousa, F.S., Mangiavacchi, N.: The MAC method. Comput. Fluids 37, 907–930 (2008)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Minev, P.: Remarks on the links between low-order DG methods and some finite-difference schemes for the Stokes problem. Int. J. Numer. Methods Fluids 58, 307–317 (2008)MathSciNetCrossRefMATH Minev, P.: Remarks on the links between low-order DG methods and some finite-difference schemes for the Stokes problem. Int. J. Numer. Methods Fluids 58, 307–317 (2008)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefMATH Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Nicolaides, R.A.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992)MathSciNetCrossRefMATH Nicolaides, R.A.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Nicolaides, R.A., Wu, X.: Analysis and convergence of the MAC scheme II. Navier–Stokes equations. Math. Comput. 65, 29–44 (1996)MathSciNetCrossRefMATH Nicolaides, R.A., Wu, X.: Analysis and convergence of the MAC scheme II. Navier–Stokes equations. Math. Comput. 65, 29–44 (1996)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Rannacher, R.: On chorin’s projection method for the incompressible navier-stokes equations. In: Heywood J.G., Masuda K., Rautmann R., Solonnikov V.A. (eds.) The Navier-Stokes Equations II—Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin, Heidelberg (1992) Rannacher, R.: On chorin’s projection method for the incompressible navier-stokes equations. In: Heywood J.G., Masuda K., Rautmann R., Solonnikov V.A. (eds.) The Navier-Stokes Equations II—Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin, Heidelberg (1992)
35.
Zurück zum Zitat Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55, 1135–1158 (2017)MathSciNetCrossRefMATH Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55, 1135–1158 (2017)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)MathSciNetCrossRefMATH Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)MathSciNetCrossRefMATH Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)MathSciNetCrossRefMATH Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Shen, J.: On a new pseudo-compressibility method for the incompressible Navier-Stokes equations. Appl. Numer. Math. 21, 71–90 (1996)MathSciNetCrossRef Shen, J.: On a new pseudo-compressibility method for the incompressible Navier-Stokes equations. Appl. Numer. Math. 21, 71–90 (1996)MathSciNetCrossRef
40.
Zurück zum Zitat Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)MathSciNetCrossRefMATH Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Bao W., Du Q. (eds.) Multiscale Modeling and Analysis for Materials Simulation. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 22, pp. 147–195. World Scientific Publishing, Hackensack (2012) Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Bao W., Du Q. (eds.) Multiscale Modeling and Analysis for Materials Simulation. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 22, pp. 147–195. World Scientific Publishing, Hackensack (2012)
42.
Zurück zum Zitat Simo, J., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comput. Methods Appl. Mech. Eng. 111, 111–154 (1994)MathSciNetCrossRefMATH Simo, J., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comput. Methods Appl. Mech. Eng. 111, 111–154 (1994)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Stephen, A.B.: A finite difference Galerkin formulation for the incompressible Navier–Stokes equations. J. Comput. Phys. 53, 152–172 (1984)MathSciNetCrossRef Stephen, A.B.: A finite difference Galerkin formulation for the incompressible Navier–Stokes equations. J. Comput. Phys. 53, 152–172 (1984)MathSciNetCrossRef
44.
Zurück zum Zitat Sun, S., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)MathSciNetCrossRefMATH Sun, S., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Temam, R.: Une méthode d’approximation des solutions des équations de Navier–Stokes. Bull. Soc. Math. France 98, 115–152 (1968)CrossRefMATH Temam, R.: Une méthode d’approximation des solutions des équations de Navier–Stokes. Bull. Soc. Math. France 98, 115–152 (1968)CrossRefMATH
46.
Zurück zum Zitat Timmermans, L.J.P., Minev, P.D., Van De Vosse, F.N.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22, 673–688 (1996)MathSciNetCrossRefMATH Timmermans, L.J.P., Minev, P.D., Van De Vosse, F.N.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22, 673–688 (1996)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Tone, F.: On the long-time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 23, 1235–1248 (2007)MathSciNetCrossRefMATH Tone, F.: On the long-time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 23, 1235–1248 (2007)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44, 29–40 (2006)MathSciNetCrossRefMATH Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44, 29–40 (2006)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)MathSciNetCrossRefMATH Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121, 753–779 (2012)MathSciNetCrossRefMATH Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121, 753–779 (2012)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Weinan, E., Liu, J.-G.: Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32, 1017–1057 (1995)MathSciNetCrossRefMATH Weinan, E., Liu, J.-G.: Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32, 1017–1057 (1995)MathSciNetCrossRefMATH
53.
54.
Zurück zum Zitat Weinan, E., Liu, J.-G.: Projection method III: spatial discretization on the staggered grid. Math. Comput. 71, 27–47 (2002)MathSciNetMATH Weinan, E., Liu, J.-G.: Projection method III: spatial discretization on the staggered grid. Math. Comput. 71, 27–47 (2002)MathSciNetMATH
Metadaten
Titel
Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids
verfasst von
Huangxin Chen
Shuyu Sun
Tao Zhang
Publikationsdatum
01.09.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0543-3

Weitere Artikel der Ausgabe 1/2018

Journal of Scientific Computing 1/2018 Zur Ausgabe

Premium Partner