Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

09.05.2020 | Original Article

Enzymatic conversion of treated oil palm empty fruit bunches fiber into fermentable sugars: optimization of solid and protein loadings and surfactant effects

verfasst von: Camila Charpentier Alfaro, Johanna Méndez Arias

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Empty palm fruit bunches fiber (EPFBF) is a lignocellulosic biomass by-product of palm oil production. In the present work, EPFBF was pretreated with sequential diluted acid/alkali to enhance the material’s enzymatic digestibility. Response surface methodology (RSM) based on Central Composite Rotatable Design (CCRD) was used to optimize solids and protein loadings to maximize both glucose release and enzymatic hydrolysis (EH) yield after 48 h. Optimum solid and protein loadings determined by RSM were 243.4 g/L and 22 mg/g of cellulose, respectively, and under these conditions 74.8 ± 0.3 g/L of glucose were obtained, corresponding to an EH yield of 64.7 ± 0.2%. Polyethylene glycol 8000 (PEG 8000), bovine serum albumin (BSA), and TWEEN 20 were supplemented separately to evaluate their influence on EH of pretreated EPFBF. The highest levels of glucose release were achieved by adding 150 mg/g of cellulose of PEG 8000, increasing EH yield to 76.6 ± 0.9%. A simultaneous saccharification and fermentation (SSF) with delayed inoculation process was used for ethanol production. A final ethanol concentration of 32.6 ± 1.0 g/L was obtained with an efficiency of 74.1% and an overall productivity of 0.6 g/(L h).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Šantek I, Komes D, Novak S, Šantek B (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56(3):289–311CrossRef Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Šantek I, Komes D, Novak S, Šantek B (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56(3):289–311CrossRef
2.
Zurück zum Zitat Papa G, Rodriguez S, George A, Schievano A, Orzi V, Sale KL, Singh S, Adani F, Simmons BA (2015) Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour Technol 183:101–110CrossRef Papa G, Rodriguez S, George A, Schievano A, Orzi V, Sale KL, Singh S, Adani F, Simmons BA (2015) Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour Technol 183:101–110CrossRef
3.
Zurück zum Zitat Cardona E, Llano B, Peñuela M, Peña J, Ríos LA (2018) Liquid-hot-water pretreatment of palm-oil residues for ethanol production: an economic approach to the selection of the processing conditions. Energy 160:441–451CrossRef Cardona E, Llano B, Peñuela M, Peña J, Ríos LA (2018) Liquid-hot-water pretreatment of palm-oil residues for ethanol production: an economic approach to the selection of the processing conditions. Energy 160:441–451CrossRef
4.
Zurück zum Zitat Secretaría Ejecutiva de Planificación Sectorial Agropecuaria (2018). Boletín Estadístico Agropecuario N° 28. San José Secretaría Ejecutiva de Planificación Sectorial Agropecuaria (2018). Boletín Estadístico Agropecuario N° 28. San José
5.
Zurück zum Zitat Piarpuzán D, Quintero J, Cardona C (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenergy 35:1130–1137CrossRef Piarpuzán D, Quintero J, Cardona C (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenergy 35:1130–1137CrossRef
6.
Zurück zum Zitat Hamzah F, Idris A, Shuan T (2011) Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass Bioenergy 35:1055–1059CrossRef Hamzah F, Idris A, Shuan T (2011) Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass Bioenergy 35:1055–1059CrossRef
7.
Zurück zum Zitat Pattanamanee W, Choorit W, Deesan C, Sirisansaneeyakul S, Chisti Y (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrog Energy 37(5):4077–4087CrossRef Pattanamanee W, Choorit W, Deesan C, Sirisansaneeyakul S, Chisti Y (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrog Energy 37(5):4077–4087CrossRef
8.
Zurück zum Zitat Sklavounos E, Iakovlev M, Survase S, Granström T, van Heiningen A (2013) Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE fermentation. Bioresour Technol 147(1):102–109CrossRef Sklavounos E, Iakovlev M, Survase S, Granström T, van Heiningen A (2013) Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE fermentation. Bioresour Technol 147(1):102–109CrossRef
9.
Zurück zum Zitat Kim S, Kim C (2013) Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renew Energy 54:150–155CrossRef Kim S, Kim C (2013) Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renew Energy 54:150–155CrossRef
10.
Zurück zum Zitat Palamae S, Palachum W, Chisti Y, Choorit W (2014) Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide. Biomass Bioenergy 66:240–248CrossRef Palamae S, Palachum W, Chisti Y, Choorit W (2014) Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide. Biomass Bioenergy 66:240–248CrossRef
11.
Zurück zum Zitat Tan L, Wang M, Li X, Li H, Zhao J, Qu Y, Choo Y, Loh SK (2016) Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products. Bioresour Technol 200:572–578CrossRef Tan L, Wang M, Li X, Li H, Zhao J, Qu Y, Choo Y, Loh SK (2016) Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products. Bioresour Technol 200:572–578CrossRef
12.
Zurück zum Zitat Chang S (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 62:174–181CrossRef Chang S (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 62:174–181CrossRef
13.
Zurück zum Zitat Palamae S, Dechatiwongse P, Choorit W, Chisti Y, Prasertsan P (2017) Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydr Polym 155:491–497CrossRef Palamae S, Dechatiwongse P, Choorit W, Chisti Y, Prasertsan P (2017) Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydr Polym 155:491–497CrossRef
14.
Zurück zum Zitat Maitan-Alfenas G, Visser E, Guimaraes V (2014) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRef Maitan-Alfenas G, Visser E, Guimaraes V (2014) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRef
15.
Zurück zum Zitat Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172CrossRef Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172CrossRef
16.
Zurück zum Zitat Ye Z, Berson RE (2014) Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes. Bioresour Technol 167:582–586CrossRef Ye Z, Berson RE (2014) Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes. Bioresour Technol 167:582–586CrossRef
17.
Zurück zum Zitat Yang M, Zhang J, Kuittinen S, Vepsäläinen J, Soininen P, Keinänen M, Pappinen A (2015) Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone–butanol–ethanol fermentation. Bioresour Technol 189:131–137CrossRef Yang M, Zhang J, Kuittinen S, Vepsäläinen J, Soininen P, Keinänen M, Pappinen A (2015) Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone–butanol–ethanol fermentation. Bioresour Technol 189:131–137CrossRef
18.
Zurück zum Zitat Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208CrossRef Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208CrossRef
19.
Zurück zum Zitat Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme Microb Tech 40(4):754–762CrossRef Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme Microb Tech 40(4):754–762CrossRef
20.
Zurück zum Zitat Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11CrossRef Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11CrossRef
22.
Zurück zum Zitat Have M, Jørgensen H (2013) Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnol Biofuels 6:165CrossRef Have M, Jørgensen H (2013) Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnol Biofuels 6:165CrossRef
23.
Zurück zum Zitat Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31(3):353–364CrossRef Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31(3):353–364CrossRef
25.
Zurück zum Zitat Menegol D, Scholl AL, Fontana RC, Dillon AJP, Camassola M (2014) Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers Manag 88:1252–1256CrossRef Menegol D, Scholl AL, Fontana RC, Dillon AJP, Camassola M (2014) Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers Manag 88:1252–1256CrossRef
26.
Zurück zum Zitat Monschein M, Reisinger C, Nidetzky B (2014) Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw. Bioresour Technol 169:713–722CrossRef Monschein M, Reisinger C, Nidetzky B (2014) Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw. Bioresour Technol 169:713–722CrossRef
28.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin in biomass (Version 08-03-2012). Laboratory Analytical Procedure. National Renewable Energy Laboratory. Available online: www.nrel.gov. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin in biomass (Version 08-03-2012). Laboratory Analytical Procedure. National Renewable Energy Laboratory. Available online: www.​nrel.​gov.
29.
Zurück zum Zitat Jung Y, Kim I, Han J, Choi I, Kim K (2011) Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour Technol 103:9806–9809CrossRef Jung Y, Kim I, Han J, Choi I, Kim K (2011) Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour Technol 103:9806–9809CrossRef
30.
Zurück zum Zitat Baharuddin A, Yunos N, Mahmud N, Zakaria R, Yunos K (2012) Effect of high-pressure steam treatment on enzymatic saccharification of oil palm empty fruit bunches. BioResources 7(3):3525–3538 Baharuddin A, Yunos N, Mahmud N, Zakaria R, Yunos K (2012) Effect of high-pressure steam treatment on enzymatic saccharification of oil palm empty fruit bunches. BioResources 7(3):3525–3538
32.
Zurück zum Zitat Sudiyani Y, Styarini D, Triwahyuni E, Sudiyarmanto, Sembiring KC, Aristiawan Y, Abimanyu H, Han MH (2013) Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot - scale unit. Energy Procedia 32:31–38CrossRef Sudiyani Y, Styarini D, Triwahyuni E, Sudiyarmanto, Sembiring KC, Aristiawan Y, Abimanyu H, Han MH (2013) Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot - scale unit. Energy Procedia 32:31–38CrossRef
33.
Zurück zum Zitat Kristiani A, Effendi N, Aristiawan Y, Aulia F, Sudiyani Y (2015) Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia 68(855):195–204CrossRef Kristiani A, Effendi N, Aristiawan Y, Aulia F, Sudiyani Y (2015) Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia 68(855):195–204CrossRef
34.
Zurück zum Zitat Triwahyuni E, Hariyanti S, Dahnum D, Nurdin M, Abimanyu H (2015) Optimization of saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chem 16:141–148CrossRef Triwahyuni E, Hariyanti S, Dahnum D, Nurdin M, Abimanyu H (2015) Optimization of saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chem 16:141–148CrossRef
35.
Zurück zum Zitat Sugiharto YEC, Harimawan A, Kresnowati MTAP, Purwadi R, Mariyana R, Andry, Fitriana HN, Hosen HF (2016) Enzyme feeding strategies for better fed-batch enzymatic hydrolysis of empty fruit bunch. Bioresour Technol 207:175–179CrossRef Sugiharto YEC, Harimawan A, Kresnowati MTAP, Purwadi R, Mariyana R, Andry, Fitriana HN, Hosen HF (2016) Enzyme feeding strategies for better fed-batch enzymatic hydrolysis of empty fruit bunch. Bioresour Technol 207:175–179CrossRef
36.
Zurück zum Zitat Chiesa S, Gnansounou E (2014) Use of empty fruit bunches from the oil palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment. Bioresour Technol 159:355–364CrossRef Chiesa S, Gnansounou E (2014) Use of empty fruit bunches from the oil palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment. Bioresour Technol 159:355–364CrossRef
37.
Zurück zum Zitat Khatri V, Meddeb-Mouelhi F, Adjallé K, Barnabé S, Beauregard M (2018) Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules. Biotechnol Biofuels 11(1). https://doi.org/10.1186/s13068-018-1145-5 Khatri V, Meddeb-Mouelhi F, Adjallé K, Barnabé S, Beauregard M (2018) Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules. Biotechnol Biofuels 11(1). https://​doi.​org/​10.​1186/​s13068-018-1145-5
39.
Zurück zum Zitat Kumar R, Wyman C (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25(2):302–314CrossRef Kumar R, Wyman C (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25(2):302–314CrossRef
41.
Zurück zum Zitat Andersen N (2007) Enzymatic hydrolysis of cellulose: experimental and modeling studies. PhD (Chemical Engineering), Technical University of Denmark (DTU), BioCentrum Andersen N (2007) Enzymatic hydrolysis of cellulose: experimental and modeling studies. PhD (Chemical Engineering), Technical University of Denmark (DTU), BioCentrum
42.
Zurück zum Zitat Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480CrossRef Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480CrossRef
45.
Zurück zum Zitat Méndez J, Moraes A, Amarante L, Machado A, Pereira N (2017) Addition of surfactants and non-hydrolytic proteins and their influence on enzymatic hydrolysis of pretreated sugarcane bagasse. Appl Biochem Biotechnol 181:593–603CrossRef Méndez J, Moraes A, Amarante L, Machado A, Pereira N (2017) Addition of surfactants and non-hydrolytic proteins and their influence on enzymatic hydrolysis of pretreated sugarcane bagasse. Appl Biochem Biotechnol 181:593–603CrossRef
46.
Zurück zum Zitat Ko J, Ximenes E, Kim Y, Ladisch MR (2014) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 9999:1–10 Ko J, Ximenes E, Kim Y, Ladisch MR (2014) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 9999:1–10
57.
Zurück zum Zitat Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117CrossRef Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117CrossRef
58.
61.
Zurück zum Zitat Huang Y, Qin X, Luo X-M, Nong Q, Yang Q, Zhang Z, Gao Y, Lv F, Chen Y, Yu Z, Liu J-L, Feng J-X (2015) Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 77:53–63CrossRef Huang Y, Qin X, Luo X-M, Nong Q, Yang Q, Zhang Z, Gao Y, Lv F, Chen Y, Yu Z, Liu J-L, Feng J-X (2015) Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 77:53–63CrossRef
62.
Zurück zum Zitat Liu Z-H, Qin L, Zhu J-Q, Li B-Z, Yuan Y-J (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology Biofuels 7:167CrossRef Liu Z-H, Qin L, Zhu J-Q, Li B-Z, Yuan Y-J (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology Biofuels 7:167CrossRef
63.
Zurück zum Zitat Triwahyuni E, Muryanto, Sudiyani Y, Abimanyu H (2015) The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia 68:138–146CrossRef Triwahyuni E, Muryanto, Sudiyani Y, Abimanyu H (2015) The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia 68:138–146CrossRef
Metadaten
Titel
Enzymatic conversion of treated oil palm empty fruit bunches fiber into fermentable sugars: optimization of solid and protein loadings and surfactant effects
verfasst von
Camila Charpentier Alfaro
Johanna Méndez Arias
Publikationsdatum
09.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00724-y

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe