Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

27.07.2016

Evaluation of a transfer function model using experimental data and numerical analysis: the case of a pyroelectric sensor

verfasst von: Nejmeddine Sifi, Ahmed Jridi, Oualid Touayar

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this paper is to present an evaluation study of a pyroelectric sensor model implemented in \(\hbox {MATLAB}^{\circledR }/\hbox {SIMULINK}^{\circledR }\) environment. The sensor model consists of some cascaded transfer functions taking into account the material characteristics and geometrical parameters which have been synthesized in the form of thermal and electrical time constants and a global multiplying coefficient. The model was proposed by Odon to serve as an excellent basis for the analysis of the dynamic behavior of a pyroelectric sensor. The study performed is relevant to evaluate the validity of the model by comparing its simulated response to measurement obtained on a pyroelectric sensor prototype. To achieve this evaluation, an optimization algorithm is used to estimate the parameters values of the transfer function model using a succession of tests and adjustments so that the algorithm converges to and reaches the optimal solution giving an acceptable correlation between simulated and measured responses. The semi-experimental evaluation approach has been applied to two prototype sensors with pyroelectric material thicknesses of 9 and \(25\,{\upmu }\hbox {m}\), respectively. In the two cases, the estimated values of the parameters were very interesting in terms of uncertainties (between 1.846 and 6.726 % at \(1{\upsigma }\) level) and setting evidence for the existence of two global solutions, i.e., two deep minima for each prototype sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pace, D.: Modeling and simulation-verification and validation challenges. Johns Hopkins APL Tech. Dig. 25, 163–172 (2004) Pace, D.: Modeling and simulation-verification and validation challenges. Johns Hopkins APL Tech. Dig. 25, 163–172 (2004)
2.
Zurück zum Zitat Fonseca, J.-E., Kubis, T., Povolotskyi, M., Novakovic, B., Ajoy, A., Hegde, G., Ilatikhameneh, H., Jiang, Z., Sengupta, P., Tan, Y., Klimeck, G.: Efficient and realistic device modeling from atomic detail to the nanoscale. J. Comput. Electron. 12, 592–600 (2013)CrossRef Fonseca, J.-E., Kubis, T., Povolotskyi, M., Novakovic, B., Ajoy, A., Hegde, G., Ilatikhameneh, H., Jiang, Z., Sengupta, P., Tan, Y., Klimeck, G.: Efficient and realistic device modeling from atomic detail to the nanoscale. J. Comput. Electron. 12, 592–600 (2013)CrossRef
3.
Zurück zum Zitat Chen, X., Meng, X.: An improved simulation-based modeling method for electronic system. In: Wu, Y. (ed.) Software Engineering and Knowledge Engineering. Springer, Heidelberg (2012) Chen, X., Meng, X.: An improved simulation-based modeling method for electronic system. In: Wu, Y. (ed.) Software Engineering and Knowledge Engineering. Springer, Heidelberg (2012)
4.
Zurück zum Zitat Jin, G., Zhe-min, D., Xi-peng, Y., Wei, G.: Transistor level modeling for circuit simulation. In: Yang, G. (ed.) The 2012 International Conference on Communication, Electronics and Automation Engineering. Springer, Berlin (2013) Jin, G., Zhe-min, D., Xi-peng, Y., Wei, G.: Transistor level modeling for circuit simulation. In: Yang, G. (ed.) The 2012 International Conference on Communication, Electronics and Automation Engineering. Springer, Berlin (2013)
5.
Zurück zum Zitat Shymansky, A., Babakov, V.: Computational models for investigation of channel amplifier’s optimal parameters. J. Comput. Electron. 13, 161–169 (2014)CrossRef Shymansky, A., Babakov, V.: Computational models for investigation of channel amplifier’s optimal parameters. J. Comput. Electron. 13, 161–169 (2014)CrossRef
6.
Zurück zum Zitat Chopra, P.-K., Chandrasekhar, M.-G.: ANN modeling for design of a matched low noise pHEMT amplifier for mobile application. J. Comput. Electron. 12, 743–751 (2013)CrossRef Chopra, P.-K., Chandrasekhar, M.-G.: ANN modeling for design of a matched low noise pHEMT amplifier for mobile application. J. Comput. Electron. 12, 743–751 (2013)CrossRef
7.
Zurück zum Zitat Chaudhry, A., Sangwan, S., Nath Roy, J.: Modeling of some electrical parameters of a MOSFET under applied uniaxial stress. J. Comput. Electron. 10, 437–442 (2011)CrossRef Chaudhry, A., Sangwan, S., Nath Roy, J.: Modeling of some electrical parameters of a MOSFET under applied uniaxial stress. J. Comput. Electron. 10, 437–442 (2011)CrossRef
8.
Zurück zum Zitat Dendouga, A., Bouguechal, N., Kouda, S., Barra, S., Lakehal, B.: Contribution to the modeling of a non-ideal Sigma-Delta modulator. J. Comput. Electron. 11, 321–329 (2012)CrossRef Dendouga, A., Bouguechal, N., Kouda, S., Barra, S., Lakehal, B.: Contribution to the modeling of a non-ideal Sigma-Delta modulator. J. Comput. Electron. 11, 321–329 (2012)CrossRef
9.
Zurück zum Zitat Djeffal, F., Lakhdar, N.: An improved analog electrical performance of submicron Dual-Material gate (DM) GaAs-MESFETs using multi-objective computation. J. Comput. Electron. 12, 29–35 (2013)CrossRef Djeffal, F., Lakhdar, N.: An improved analog electrical performance of submicron Dual-Material gate (DM) GaAs-MESFETs using multi-objective computation. J. Comput. Electron. 12, 29–35 (2013)CrossRef
10.
Zurück zum Zitat Armitage, A.-F., Benjamin, K., Setiadi, D., Weller, H., Binnie, T.-D.: Infrared sensing using pyroelectric polymers. Proceeding of the Eighth Conference on Sensors and Their Applications, pp. 297–302. Glasgow (1997) Armitage, A.-F., Benjamin, K., Setiadi, D., Weller, H., Binnie, T.-D.: Infrared sensing using pyroelectric polymers. Proceeding of the Eighth Conference on Sensors and Their Applications, pp. 297–302. Glasgow (1997)
11.
Zurück zum Zitat Cornelius, W.-A., Sargent, R.-V.: Analog technique for the analysis of pyroelectric optical-detection signals. Rev. Sci. Instrum. 57, 1574–1580 (1986). doi:10.1063/1.1138587 CrossRef Cornelius, W.-A., Sargent, R.-V.: Analog technique for the analysis of pyroelectric optical-detection signals. Rev. Sci. Instrum. 57, 1574–1580 (1986). doi:10.​1063/​1.​1138587 CrossRef
12.
Zurück zum Zitat Hamilton, C.-A., Day, G.-W., Phelan, R.-J.: An electrically calibrated pyroelectric radiometer system. Nat. Bur. Stand. (U.S.), Technical Note 678 (1976) Hamilton, C.-A., Day, G.-W., Phelan, R.-J.: An electrically calibrated pyroelectric radiometer system. Nat. Bur. Stand. (U.S.), Technical Note 678 (1976)
13.
Zurück zum Zitat Vogt, H.: SPICE Modeling of resistive, diode and pyroelectric bolometer cells. Proceeding of the Infrared Technology and Applications XXXII, SPIE 6206 (2006) Vogt, H.: SPICE Modeling of resistive, diode and pyroelectric bolometer cells. Proceeding of the Infrared Technology and Applications XXXII, SPIE 6206 (2006)
14.
Zurück zum Zitat Ramos, P., Meca, J.-F., Mendiola, J., Martin, E.: A simple thermal and electrical model of an infrared pyroelectric detector using SPICE. Ferroelectrics 271, 379–384 (2001). doi:10.1080/00150190211482 CrossRef Ramos, P., Meca, J.-F., Mendiola, J., Martin, E.: A simple thermal and electrical model of an infrared pyroelectric detector using SPICE. Ferroelectrics 271, 379–384 (2001). doi:10.​1080/​00150190211482 CrossRef
15.
Zurück zum Zitat Wheless, W.-P., Wurtz, L.-T., Wells, J.-A.: An equivalent-circuit radiation sensor model. Proceeding of the Southeastcon ’94: Creative Technology Transfer—A Global Affair. April 10–13, 1994. IEEE, pp. 7–11 (1994) Wheless, W.-P., Wurtz, L.-T., Wells, J.-A.: An equivalent-circuit radiation sensor model. Proceeding of the Southeastcon ’94: Creative Technology Transfer—A Global Affair. April 10–13, 1994. IEEE, pp. 7–11 (1994)
16.
Zurück zum Zitat Capineri, L., Masotti, L., Mazzoni, M.: Pyroelectric PVDF sensor modeling of the temporal voltage response to arbitrarily modulated radiation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1406–1412 (2000). doi:10.1109/58.883529 CrossRef Capineri, L., Masotti, L., Mazzoni, M.: Pyroelectric PVDF sensor modeling of the temporal voltage response to arbitrarily modulated radiation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1406–1412 (2000). doi:10.​1109/​58.​883529 CrossRef
17.
Zurück zum Zitat Odon, A.: Modelling and simulation of the pyroelectric detector using MATLAB/Simulink. Meas. Sci. Rev. 6, 195–199 (2010) Odon, A.: Modelling and simulation of the pyroelectric detector using MATLAB/Simulink. Meas. Sci. Rev. 6, 195–199 (2010)
18.
Zurück zum Zitat Sifi, N., Touayar, O.: Verification of a pyroelectric sensor model using measurements and an optimization algorithm. Proceeding of the International Conference on Control, Engineering and Information Technology, CEIT 2014, pp. 159–164 (2014) Sifi, N., Touayar, O.: Verification of a pyroelectric sensor model using measurements and an optimization algorithm. Proceeding of the International Conference on Control, Engineering and Information Technology, CEIT 2014, pp. 159–164 (2014)
19.
Zurück zum Zitat Sifi, N., Ferrari, Ph, Angénieux, G.: A combined algorithm for optimizing microwave components models in time domain. IEEE Trans. Magn. 31, 1980–1983 (1995)CrossRef Sifi, N., Ferrari, Ph, Angénieux, G.: A combined algorithm for optimizing microwave components models in time domain. IEEE Trans. Magn. 31, 1980–1983 (1995)CrossRef
20.
Zurück zum Zitat Ravindran, A.: Engineering Optimization-Methods and Applications. Wiley, New York (2006) Ravindran, A.: Engineering Optimization-Methods and Applications. Wiley, New York (2006)
21.
Zurück zum Zitat Lewis, J.-M., Lakshmivarahan, S., Dhall, S.: Dynamic Data Assimilation: A least squares approach. Cambridge University Press, Cambridge (2006)CrossRefMATH Lewis, J.-M., Lakshmivarahan, S., Dhall, S.: Dynamic Data Assimilation: A least squares approach. Cambridge University Press, Cambridge (2006)CrossRefMATH
23.
Zurück zum Zitat Weller, H.-J., Setiadi, D., Binnie, T.-D.: Low-noise charge sensitive readout for pyroelectric sensor arrays using PVDF thin film. Sensor Actuat. A-Phys. 85(1), 267–274 (2000)CrossRef Weller, H.-J., Setiadi, D., Binnie, T.-D.: Low-noise charge sensitive readout for pyroelectric sensor arrays using PVDF thin film. Sensor Actuat. A-Phys. 85(1), 267–274 (2000)CrossRef
24.
Zurück zum Zitat Cooper, J.: Minimum detectable power of a pyroelectric thermal receiver. Rev. Sci. Instrum. 33, 92–95 (1962)CrossRef Cooper, J.: Minimum detectable power of a pyroelectric thermal receiver. Rev. Sci. Instrum. 33, 92–95 (1962)CrossRef
25.
Zurück zum Zitat Liu, S.-T., Long, D.: Pyroelectric detectors and materials. Proc. IEEE 66(1), 14–26 (1978)CrossRef Liu, S.-T., Long, D.: Pyroelectric detectors and materials. Proc. IEEE 66(1), 14–26 (1978)CrossRef
26.
Zurück zum Zitat Sifi, N., Touayar, O.: Evaluation of an electrical equivalent model using measurements and an optimization algorithm: application to a pyroelectric sensor. J. Circuits Syst. Comput. 24, 22 (2015). doi:10.1142/S0218126615500978 CrossRef Sifi, N., Touayar, O.: Evaluation of an electrical equivalent model using measurements and an optimization algorithm: application to a pyroelectric sensor. J. Circuits Syst. Comput. 24, 22 (2015). doi:10.​1142/​S021812661550097​8 CrossRef
27.
Zurück zum Zitat Knapek, A.: Pyroelectric detector signal measurement and processing. Masters’s Thesis. Brno University of Technology (2008) Knapek, A.: Pyroelectric detector signal measurement and processing. Masters’s Thesis. Brno University of Technology (2008)
28.
Zurück zum Zitat Elshaer, A.-M., Aboulsoud, A.-K., Ebrahim, Sh, Soliman, M.: Electrical chopped frequency circuit for characterizing pyroelectric sensor. J. Elect. Eng. 14, 357–362 (2014) Elshaer, A.-M., Aboulsoud, A.-K., Ebrahim, Sh, Soliman, M.: Electrical chopped frequency circuit for characterizing pyroelectric sensor. J. Elect. Eng. 14, 357–362 (2014)
29.
Zurück zum Zitat Hyseni, G., Caka, N., Hyseni, K.: Analysis of MWIR infrared pyroelectric detector parameters. Adv. Res. Phys. Eng. 25, 162–165 (2010) Hyseni, G., Caka, N., Hyseni, K.: Analysis of MWIR infrared pyroelectric detector parameters. Adv. Res. Phys. Eng. 25, 162–165 (2010)
30.
31.
Zurück zum Zitat Shankar, M., Burchett, J.-B., Hao, Q., Guenther, B.-D., Brady, D.-J.: Human-tracking systems using pyroelectric infrared detectors. Opt. Eng. 45, 106401-1–106401-10 (2006). doi:10.1117/1.2360948 CrossRef Shankar, M., Burchett, J.-B., Hao, Q., Guenther, B.-D., Brady, D.-J.: Human-tracking systems using pyroelectric infrared detectors. Opt. Eng. 45, 106401-1–106401-10 (2006). doi:10.​1117/​1.​2360948 CrossRef
34.
Zurück zum Zitat Neumann, N., Banta, V.: Comparison of pyroelectric and thermopile detectors. Proceeding of the AMA Conference 2013, Nuremberg (2013). doi:10.5162/irs2013/iP12 Neumann, N., Banta, V.: Comparison of pyroelectric and thermopile detectors. Proceeding of the AMA Conference 2013, Nuremberg (2013). doi:10.​5162/​irs2013/​iP12
35.
Zurück zum Zitat Capineri, L., Mazzoni, M.: Laser pulses characterization with pyroelectric sensors. In: Duarte, F.-J. (ed.) Laser Pulse Phenomena and Applications. InTech, Barcelona (2010) Capineri, L., Mazzoni, M.: Laser pulses characterization with pyroelectric sensors. In: Duarte, F.-J. (ed.) Laser Pulse Phenomena and Applications. InTech, Barcelona (2010)
36.
39.
Zurück zum Zitat Odon, A.: Probe with PVDF sensor for energy measurements of optical radiation. Meas. Sci. Rev. 3, 111–114 (2003) Odon, A.: Probe with PVDF sensor for energy measurements of optical radiation. Meas. Sci. Rev. 3, 111–114 (2003)
Metadaten
Titel
Evaluation of a transfer function model using experimental data and numerical analysis: the case of a pyroelectric sensor
verfasst von
Nejmeddine Sifi
Ahmed Jridi
Oualid Touayar
Publikationsdatum
27.07.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0876-4

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt