Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2019

14.02.2019

Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel

verfasst von: Arūnas Baltušnikas, Albertas Grybėnas, Rita Kriūkienė, Irena Lukošiūtė, Vidas Makarevičius

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural changes of P91 steel after different heat treatment and M23C6 lattice expansion are well described by JMA kinetics law; however, the role of molybdenum on the M23C6 lattice expansion is not clearly revealed. The aim of the present work is to investigate the solubility of molybdenum in M23C6 lattice when iron or chromium atoms are replaced by molybdenum and to examine the effect of crystallographic structure changes on the mechanical properties of thermal aged P91 steel. Rietveld analysis of electrochemically extracted residues from the as-received and thermally aged at 600, 650 and 700 °C steel revealed that it is possible to measure and evaluate quantitatively the fraction of 8c crystallographic site occupation by molybdenum atoms of the M23C6 lattice. It was shown that the value of the site occupation factor plotted in natural logarithmic scale increases linearly and obeys Johnson–Mehl–Avrami kinetic law, giving Avrami exponent navg = 0.3356 and activation energy E = 272 kJ/mol. Hardness measurements of the aged samples indicate that the deterioration of properties is closely coherent to the growth of crystallite size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, and P.J. Ennis, Modified 9% Cr Steels for Advanced Power Generation: Microstructure and Properties, J. Achiev. Mater. Manuf. Eng., 2006, 19(2), p 43–48 A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, and P.J. Ennis, Modified 9% Cr Steels for Advanced Power Generation: Microstructure and Properties, J. Achiev. Mater. Manuf. Eng., 2006, 19(2), p 43–48
2.
Zurück zum Zitat F. Abe, M. Taneike, and K. Sawada, Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-sized Carbonitrides, Int. J. Press. Vessels Pip., 2007, 84(1-2), p 3–12CrossRef F. Abe, M. Taneike, and K. Sawada, Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-sized Carbonitrides, Int. J. Press. Vessels Pip., 2007, 84(1-2), p 3–12CrossRef
3.
Zurück zum Zitat W. Bendick, L. Cipolla, J. Gabrel, and J. Hald, New ECCC Assessment of Creep Ruptures Strength for Steel Grade X10CrMoVNb9-1 (Grade91), Int. J. Press. Vessels Pip., 2010, 87(6), p 304–309CrossRef W. Bendick, L. Cipolla, J. Gabrel, and J. Hald, New ECCC Assessment of Creep Ruptures Strength for Steel Grade X10CrMoVNb9-1 (Grade91), Int. J. Press. Vessels Pip., 2010, 87(6), p 304–309CrossRef
4.
Zurück zum Zitat F. Abe, Grade 91 Heat-Resistant Martensitic Steel, Coal Power Plant Materials and Life Assessment—Developments and Applications, Woodhead Publishing, Amsterdam, 2014, p 3–49 F. Abe, Grade 91 Heat-Resistant Martensitic Steel, Coal Power Plant Materials and Life Assessment—Developments and Applications, Woodhead Publishing, Amsterdam, 2014, p 3–49
6.
Zurück zum Zitat D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, and M.D. Mathew, Effect of Normalizing and Tempering Temperatures on Microstructure and Mechanical Properties of P92 Steel, Int. J. Press. Vessels Pip., 2015, 132-133, p 97–105CrossRef D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, and M.D. Mathew, Effect of Normalizing and Tempering Temperatures on Microstructure and Mechanical Properties of P92 Steel, Int. J. Press. Vessels Pip., 2015, 132-133, p 97–105CrossRef
7.
Zurück zum Zitat G. Golański, A. Zielińska-Lipiec, S. Mroziński, and C. Kolan, Microstructural Evolution of Aged Heat-Resistant Cast Steel Following Strain Controlled Fatigue, Mater. Sci. Eng. A, 2015, 627, p 106–110CrossRef G. Golański, A. Zielińska-Lipiec, S. Mroziński, and C. Kolan, Microstructural Evolution of Aged Heat-Resistant Cast Steel Following Strain Controlled Fatigue, Mater. Sci. Eng. A, 2015, 627, p 106–110CrossRef
8.
Zurück zum Zitat N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva, Stability of Binary and Ternary M23C6 Carbides from First Principles, Comput. Mater. Sci., 2015, 96, p 159–164CrossRef N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva, Stability of Binary and Ternary M23C6 Carbides from First Principles, Comput. Mater. Sci., 2015, 96, p 159–164CrossRef
9.
Zurück zum Zitat F.J. Franck, P. Tambuyser, and I. Zubani, X-ray Powder Diffraction Evidence for the Incorporation of W and Mo Into M23C6 Extracted from High-Temperature Alloys, J. Mater. Sci., 1982, 17(10), p 3057–3065CrossRef F.J. Franck, P. Tambuyser, and I. Zubani, X-ray Powder Diffraction Evidence for the Incorporation of W and Mo Into M23C6 Extracted from High-Temperature Alloys, J. Mater. Sci., 1982, 17(10), p 3057–3065CrossRef
10.
Zurück zum Zitat J.Y. Xie, J. Shen, N. Chen, and S. Seetharaman, Site Preference and Mechanical Properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W), Acta Mater., 2006, 54(18), p 4653–4658CrossRef J.Y. Xie, J. Shen, N. Chen, and S. Seetharaman, Site Preference and Mechanical Properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W), Acta Mater., 2006, 54(18), p 4653–4658CrossRef
11.
Zurück zum Zitat A. Aghajani, Ch. Somsen, and G. Eggeler, On the Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater., 2009, 57(17), p 5093–5106CrossRef A. Aghajani, Ch. Somsen, and G. Eggeler, On the Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater., 2009, 57(17), p 5093–5106CrossRef
12.
Zurück zum Zitat S. Spigarelli, Microstructure-Based Assessment of Creep Rupture Strength in 9Cr Steels, Int. J. Press. Vessels Pip., 2013, 101, p 64–71CrossRef S. Spigarelli, Microstructure-Based Assessment of Creep Rupture Strength in 9Cr Steels, Int. J. Press. Vessels Pip., 2013, 101, p 64–71CrossRef
13.
Zurück zum Zitat H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, Static Recovery of Tempered Lath Martensite Microstructures During Long-Term Aging in 9–12% Cr Heat Resistant Steels, Mater. Lett., 2009, 63(28), p 2423–2425CrossRef H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, Static Recovery of Tempered Lath Martensite Microstructures During Long-Term Aging in 9–12% Cr Heat Resistant Steels, Mater. Lett., 2009, 63(28), p 2423–2425CrossRef
14.
Zurück zum Zitat J.Y. Xie, N.X. Chen, L.D. Teng, and S. Seetharaman, Atomistic Study on the Site Preference and Thermodynamic Properties for Cr23−xFexC6, Acta Mater., 2005, 53(20), p 5305–5312CrossRef J.Y. Xie, N.X. Chen, L.D. Teng, and S. Seetharaman, Atomistic Study on the Site Preference and Thermodynamic Properties for Cr23−xFexC6, Acta Mater., 2005, 53(20), p 5305–5312CrossRef
15.
Zurück zum Zitat J.Y. Xie, L.D. Teng, N.X. Chen, and S. Seetharaman, Atomistic Simulation on the Structural Properties and Phase Stability for Cr23C6 and Mn23C6, J. Alloys Compd., 2006, 420(1-2), p 269–272CrossRef J.Y. Xie, L.D. Teng, N.X. Chen, and S. Seetharaman, Atomistic Simulation on the Structural Properties and Phase Stability for Cr23C6 and Mn23C6, J. Alloys Compd., 2006, 420(1-2), p 269–272CrossRef
16.
Zurück zum Zitat F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki, and H. Okada, Microstructure Design Near Grain Boundaries for Creep Resistant Tempered-Martensitic 9Cr Steels for 650 °C USC Boilers, in Proceedings of TMS Symposium on Creep Deformation: Fundamentals and Applications, Seattle, USA, ed. by R.S., Mishra, J.C. Earthman, S.V. Raj 2002, p 341–350 F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki, and H. Okada, Microstructure Design Near Grain Boundaries for Creep Resistant Tempered-Martensitic 9Cr Steels for 650 °C USC Boilers, in Proceedings of TMS Symposium on Creep Deformation: Fundamentals and Applications, Seattle, USA, ed. by R.S., Mishra, J.C. Earthman, S.V. Raj 2002, p 341–350
17.
Zurück zum Zitat F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of Martensitic Microstructure in Advanced 9Cr Steel During Creep at High Temperature, Mater. Sci. Eng. A, 2004, 378(1-2), p 299–303CrossRef F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of Martensitic Microstructure in Advanced 9Cr Steel During Creep at High Temperature, Mater. Sci. Eng. A, 2004, 378(1-2), p 299–303CrossRef
18.
Zurück zum Zitat A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, and A. Grybėnas, Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel, J. Mater. Eng. Perform., 2016, 25(5), p 1945–1951CrossRef A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, and A. Grybėnas, Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel, J. Mater. Eng. Perform., 2016, 25(5), p 1945–1951CrossRef
19.
Zurück zum Zitat A. Le Bail, H. Duroy, and J.L. Fourquet, Ab Initio Structure Determination of LiSbWO6 by X-ray Powder Diffraction, Mater. Res. Bull., 1988, 23(3), p 447–452CrossRef A. Le Bail, H. Duroy, and J.L. Fourquet, Ab Initio Structure Determination of LiSbWO6 by X-ray Powder Diffraction, Mater. Res. Bull., 1988, 23(3), p 447–452CrossRef
20.
Zurück zum Zitat Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008 Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008
21.
Zurück zum Zitat R.W. Cheary, A.A. Coelho, and J.P. Cline, Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers, J. Res. Natl. Inst. Stand. Technol., 2004, 109(1), p 1–25CrossRef R.W. Cheary, A.A. Coelho, and J.P. Cline, Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers, J. Res. Natl. Inst. Stand. Technol., 2004, 109(1), p 1–25CrossRef
23.
Zurück zum Zitat C.M. Fang, M.A. van Huis, M.H.F. Sluiter, and H.W. Zandbergen, Stability, Structure and Electronic properties Of γ-Fe23C6 from First-Principles Theory, Acta Mater., 2010, 58(8), p 2968–2977CrossRef C.M. Fang, M.A. van Huis, M.H.F. Sluiter, and H.W. Zandbergen, Stability, Structure and Electronic properties Of γ-Fe23C6 from First-Principles Theory, Acta Mater., 2010, 58(8), p 2968–2977CrossRef
24.
Zurück zum Zitat V.K. Pecharsky and P.E. Zavalji, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, New York, 2003, p 713 V.K. Pecharsky and P.E. Zavalji, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, New York, 2003, p 713
25.
Zurück zum Zitat J.W. Christian, The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon, New York, 1975, p 586 J.W. Christian, The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon, New York, 1975, p 586
26.
Zurück zum Zitat A. Baltušnikas, R. Levinskas, and I. Lukošiūte, Analysis of Heat Resistant Steel State by Changes of Lattices Parameters of Carbide Phases, Mater. Sci. Medzg., 2008, 14(3), p 210–214 A. Baltušnikas, R. Levinskas, and I. Lukošiūte, Analysis of Heat Resistant Steel State by Changes of Lattices Parameters of Carbide Phases, Mater. Sci. Medzg., 2008, 14(3), p 210–214
27.
Zurück zum Zitat H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, and Y. Iijima, Diffusion of Molybdenum in α-Iron, Acta Mater., 2002, 50(16), p 4117–4125CrossRef H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, and Y. Iijima, Diffusion of Molybdenum in α-Iron, Acta Mater., 2002, 50(16), p 4117–4125CrossRef
28.
Zurück zum Zitat H.K.D.H. Bhadeshia, Design of Ferritic Creep-Resistant Steels, ISIJ Int., 2001, 41(6), p 626–640CrossRef H.K.D.H. Bhadeshia, Design of Ferritic Creep-Resistant Steels, ISIJ Int., 2001, 41(6), p 626–640CrossRef
29.
Zurück zum Zitat Y. Xu, X. Zhang, Y. Tian, Ch. Chen, Y. Nan, H. He, and M. Wang, Study on the Nucleation and Growth of M23C6 Carbides in a 10% Cr Martensite Ferritic Steel After Long-Term Aging, Mater. Charact., 2016, 111, p 122–127CrossRef Y. Xu, X. Zhang, Y. Tian, Ch. Chen, Y. Nan, H. He, and M. Wang, Study on the Nucleation and Growth of M23C6 Carbides in a 10% Cr Martensite Ferritic Steel After Long-Term Aging, Mater. Charact., 2016, 111, p 122–127CrossRef
30.
Zurück zum Zitat C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties, Mater. Sci. Eng. A, 2016, 664, p 58–74CrossRef C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties, Mater. Sci. Eng. A, 2016, 664, p 58–74CrossRef
31.
Zurück zum Zitat F. Masuyama, Hardness Model for Creep-Life Assessment of High-Strength Martensitic Steels, Mater. Sci. Eng. A, 2009, 510–511, p 154–157CrossRef F. Masuyama, Hardness Model for Creep-Life Assessment of High-Strength Martensitic Steels, Mater. Sci. Eng. A, 2009, 510–511, p 154–157CrossRef
32.
Zurück zum Zitat S. Khayatzadeh, D.W.J. Tanner, C.E. Truman, P.E.J. Flewitt, and D.J. Smith, Influence of Thermal Ageing on the Creep Behaviour of a P92 Martensitic Steel, Mater. Sci. Eng. A, 2017, 708, p 544–555CrossRef S. Khayatzadeh, D.W.J. Tanner, C.E. Truman, P.E.J. Flewitt, and D.J. Smith, Influence of Thermal Ageing on the Creep Behaviour of a P92 Martensitic Steel, Mater. Sci. Eng. A, 2017, 708, p 544–555CrossRef
33.
Zurück zum Zitat A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, and R. Kriūkienė, Correlation Between Structural Changes of M23C6 Carbide and Mechanical Behaviour of P91 Steel After Thermal Aging, Mater. Sci. Eng. A, 2017, 696, p 453–460CrossRef A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, and R. Kriūkienė, Correlation Between Structural Changes of M23C6 Carbide and Mechanical Behaviour of P91 Steel After Thermal Aging, Mater. Sci. Eng. A, 2017, 696, p 453–460CrossRef
Metadaten
Titel
Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel
verfasst von
Arūnas Baltušnikas
Albertas Grybėnas
Rita Kriūkienė
Irena Lukošiūtė
Vidas Makarevičius
Publikationsdatum
14.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03935-1

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Engineering and Performance 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.