Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

23.10.2018

Evolution of Microstructure and Carbon Distribution During Heat Treatments of a Dual-Phase Steel: Modeling and Atom-Probe Tomography Experiments

verfasst von: Dong An, Sung-Il Baik, Shiyan Pan, Mingfang Zhu, Dieter Isheim, Bruce W. Krakauer, David N. Seidman

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The temporal evolution of microstructures and carbon distributions in a Fe-0.323C-1.231Mn-0.849Si (mol pct) dual-phase steel during heat treatments are simulated using a two-dimensional cellular automaton model. The model involves austenite nucleation, phase transformations controlled by ferrite (α)/austenite (γ) interface mobility and the local carbon concentration, and long-range carbon diffusion. It is also coupled with a solute drag model to account for the effect of substitutional elements on the interface migration. The results show that after holding at 800 °C for 300 seconds the transformed γ-volume fraction is lower than the paraequilibrium prediction. During subsequent cooling at 6 °C s−1, the γ → α transformation takes place after a stagnant stage; the carbon concentrations in both the α- and γ-phases increase and become non-uniform. When cooled below 450 °C, the γ-volume fraction is nearly unchanged. A small amount of carbon enriched martensite, transformed from the remaining γ-phase, exists in the room temperature microstructure. The simulated microstructures and carbon concentrations in martensite compare reasonably well with the experimental micrographs and atom-probe tomographic measurements. During tempering at 400 °C, martensite decomposes and the carbon concentration in the α-matrix increases. The simulation results are used to understand the mechanisms of yield strength variations after different heat treatments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, and H. Zurob: Mater. Sci. Eng. R-Rep., 2015, vol. 92, pp. 1–38.CrossRef [1] M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, and H. Zurob: Mater. Sci. Eng. R-Rep., 2015, vol. 92, pp. 1–38.CrossRef
2.
Zurück zum Zitat [2] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.CrossRef [2] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.CrossRef
3.
Zurück zum Zitat [3] G. Krauss: Steels: Processing, Structure, and Performance, Second Edition, ASM International, Materials Park, Ohio, 2015. [3] G. Krauss: Steels: Processing, Structure, and Performance, Second Edition, ASM International, Materials Park, Ohio, 2015.
4.
Zurück zum Zitat [4] J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.CrossRef [4] J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.CrossRef
5.
6.
Zurück zum Zitat [6] M.G. Mecozzi, C. Bos, and J. Sietsma: Acta Mater., 2015, vol. 88, pp. 302–13.CrossRef [6] M.G. Mecozzi, C. Bos, and J. Sietsma: Acta Mater., 2015, vol. 88, pp. 302–13.CrossRef
7.
Zurück zum Zitat [7] A. Hultgren: Trans. ASM., 1947, vol. 39, pp. 915–1005. [7] A. Hultgren: Trans. ASM., 1947, vol. 39, pp. 915–1005.
8.
Zurück zum Zitat [8] G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.CrossRef [8] G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.CrossRef
9.
Zurück zum Zitat [9] H. Chen and S. van der Zwaag: Acta Mater., 2014, vol. 72, pp. 1–12.CrossRef [9] H. Chen and S. van der Zwaag: Acta Mater., 2014, vol. 72, pp. 1–12.CrossRef
10.
Zurück zum Zitat [10] Z.Q. Liu, G. Miyamoto, Z.G. Yang, and T. Furuhara: Acta Mater., 2013, vol.61, pp. 3120–9.CrossRef [10] Z.Q. Liu, G. Miyamoto, Z.G. Yang, and T. Furuhara: Acta Mater., 2013, vol.61, pp. 3120–9.CrossRef
11.
Zurück zum Zitat [11] Y. Kubo, K. Hamada, and A. Urano: Ultramicroscopy, 2013, vol. 135, pp. 64–70.CrossRef [11] Y. Kubo, K. Hamada, and A. Urano: Ultramicroscopy, 2013, vol. 135, pp. 64–70.CrossRef
12.
Zurück zum Zitat [12] T.F. Kelly and M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101.CrossRef [12] T.F. Kelly and M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101.CrossRef
13.
Zurück zum Zitat [13] D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127–58.CrossRef [13] D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127–58.CrossRef
14.
Zurück zum Zitat [14] Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 7726–40.CrossRef [14] Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 7726–40.CrossRef
15.
Zurück zum Zitat [15] Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.CrossRef [15] Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.CrossRef
16.
Zurück zum Zitat [16] M.I. Hartshorne, D. Isheim, D.N. Seidman, and M.L. Taheri: Ultramicroscopy, 2014, vol. 147, pp. 25–32.CrossRef [16] M.I. Hartshorne, D. Isheim, D.N. Seidman, and M.L. Taheri: Ultramicroscopy, 2014, vol. 147, pp. 25–32.CrossRef
17.
Zurück zum Zitat [17] S.-I. Baik, L. Ma, Y.-J. Kim, B. Li, M. Liu, D. Isheim, B.I. Yakobson, P.M. Ajayan, and D.N. Seidman: Small, 2015, vol. 11, pp. 5968–74.CrossRef [17] S.-I. Baik, L. Ma, Y.-J. Kim, B. Li, M. Liu, D. Isheim, B.I. Yakobson, P.M. Ajayan, and D.N. Seidman: Small, 2015, vol. 11, pp. 5968–74.CrossRef
18.
Zurück zum Zitat [18] J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2516–25.CrossRef [18] J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2516–25.CrossRef
19.
Zurück zum Zitat [19] C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504–17.CrossRef [19] C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504–17.CrossRef
20.
Zurück zum Zitat [20] B. Su, Z. Han, and B. Liu: ISIJ Int., 2013, vol. 53, pp. 527–34.CrossRef [20] B. Su, Z. Han, and B. Liu: ISIJ Int., 2013, vol. 53, pp. 527–34.CrossRef
21.
Zurück zum Zitat [21] B. Zhu, Y. Zhang, C. Wang, P.X. Liu, W.K. Liang, and J. Li: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3161–71.CrossRef [21] B. Zhu, Y. Zhang, C. Wang, P.X. Liu, W.K. Liang, and J. Li: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3161–71.CrossRef
22.
Zurück zum Zitat [22] G. Zhu, Y. Kang, C. Lu, and S. Li: Steel Res. Int., 2014, vol. 85, pp. 1035–46.CrossRef [22] G. Zhu, Y. Kang, C. Lu, and S. Li: Steel Res. Int., 2014, vol. 85, pp. 1035–46.CrossRef
23.
Zurück zum Zitat [23] M. Militzer, M.G. Mecozzi, J. Sietsma, and S. van der Zwaag: Acta Mater., 2006, vol. 54, pp. 3961–72.CrossRef [23] M. Militzer, M.G. Mecozzi, J. Sietsma, and S. van der Zwaag: Acta Mater., 2006, vol. 54, pp. 3961–72.CrossRef
24.
Zurück zum Zitat [24] D.Z. Li, N.M. Xiao, Y.J. Lan, C.W. Zheng, and Y.Y. Li: Acta Mater., 2007, vol. 55, pp. 6234–49.CrossRef [24] D.Z. Li, N.M. Xiao, Y.J. Lan, C.W. Zheng, and Y.Y. Li: Acta Mater., 2007, vol. 55, pp. 6234–49.CrossRef
25.
Zurück zum Zitat [25] D.S. Svyetlichnyy and A.I. Mikhalyov: ISIJ Int., 2014, vol. 54, pp. 1386–95.CrossRef [25] D.S. Svyetlichnyy and A.I. Mikhalyov: ISIJ Int., 2014, vol. 54, pp. 1386–95.CrossRef
26.
Zurück zum Zitat [26] B. Su, Q. Ma, and Z. Han: Steel Res. Int., 2017, vol. 88, p. 1600490.CrossRef [26] B. Su, Q. Ma, and Z. Han: Steel Res. Int., 2017, vol. 88, p. 1600490.CrossRef
27.
Zurück zum Zitat [27] C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692–9.CrossRef [27] C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692–9.CrossRef
28.
Zurück zum Zitat [28] B. Zhu and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1073–84.CrossRef [28] B. Zhu and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1073–84.CrossRef
29.
Zurück zum Zitat [29] B. Zhu, H. Chen, and M. Militzer: Comput. Mater. Sci., 2015, vol. 108, pp. 333–41.CrossRef [29] B. Zhu, H. Chen, and M. Militzer: Comput. Mater. Sci., 2015, vol. 108, pp. 333–41.CrossRef
30.
Zurück zum Zitat [30] H. Chen, B. Zhu, and M. Militzer: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3873–81.CrossRef [30] H. Chen, B. Zhu, and M. Militzer: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3873–81.CrossRef
31.
Zurück zum Zitat [31] D. An, S. Pan, L. Huang, T. Dai, B. Krakauer, and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 422–9.CrossRef [31] D. An, S. Pan, L. Huang, T. Dai, B. Krakauer, and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 422–9.CrossRef
33.
Zurück zum Zitat [33] G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.CrossRef [33] G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.CrossRef
34.
Zurück zum Zitat [34] G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.CrossRef [34] G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.CrossRef
35.
Zurück zum Zitat G.F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Materials Park, Ohio, 1991. G.F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Materials Park, Ohio, 1991.
36.
Zurück zum Zitat [36] O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44. [36] O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.
37.
Zurück zum Zitat [37] P.H. Chang and A.G. Preban: Acta Metall., 1985, vol. 33, pp. 897–903.CrossRef [37] P.H. Chang and A.G. Preban: Acta Metall., 1985, vol. 33, pp. 897–903.CrossRef
38.
Zurück zum Zitat [38] A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62, pp. 49–62.CrossRef [38] A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62, pp. 49–62.CrossRef
39.
Zurück zum Zitat [39] E.O. Hall: Yield Point Phenomena in Metals and Alloys, Springer US, Boston, MA, 1970.CrossRef [39] E.O. Hall: Yield Point Phenomena in Metals and Alloys, Springer US, Boston, MA, 1970.CrossRef
40.
Zurück zum Zitat [40] R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, and F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359–68.CrossRef [40] R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, and F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359–68.CrossRef
41.
Zurück zum Zitat [41] V.I. Savran, S.E. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41, pp. 583–91.CrossRef [41] V.I. Savran, S.E. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41, pp. 583–91.CrossRef
42.
Zurück zum Zitat [42] G.S. Huppi, D.K. Matlock, and G. Krauss: Scr. Metall., 1980, vol. 14, pp. 1239–43.CrossRef [42] G.S. Huppi, D.K. Matlock, and G. Krauss: Scr. Metall., 1980, vol. 14, pp. 1239–43.CrossRef
43.
Zurück zum Zitat [43] G.P. Krielaart and S. Van Der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–8.CrossRef [43] G.P. Krielaart and S. Van Der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–8.CrossRef
44.
Zurück zum Zitat [44] F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1395–405.CrossRef [44] F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1395–405.CrossRef
45.
Zurück zum Zitat [45] J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8, pp. 317–22.CrossRef [45] J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8, pp. 317–22.CrossRef
46.
Zurück zum Zitat [46] C. Capdevila, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2002, vol. 42, pp. 894–902.CrossRef [46] C. Capdevila, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2002, vol. 42, pp. 894–902.CrossRef
47.
Zurück zum Zitat [47] L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.CrossRef [47] L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.CrossRef
48.
Zurück zum Zitat [48] T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.CrossRef [48] T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.CrossRef
49.
Zurück zum Zitat [49] D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3046–59.CrossRef [49] D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3046–59.CrossRef
50.
Zurück zum Zitat [50] D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3642–54.CrossRef [50] D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3642–54.CrossRef
51.
Zurück zum Zitat [51] K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, and T.F. Kelly: Science, 2007, vol. 317, pp. 1370–74.CrossRef [51] K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, and T.F. Kelly: Science, 2007, vol. 317, pp. 1370–74.CrossRef
52.
Zurück zum Zitat [52] A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Acta Mater., 2017, vol. 124, pp. 305–15.CrossRef [52] A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Acta Mater., 2017, vol. 124, pp. 305–15.CrossRef
Metadaten
Titel
Evolution of Microstructure and Carbon Distribution During Heat Treatments of a Dual-Phase Steel: Modeling and Atom-Probe Tomography Experiments
verfasst von
Dong An
Sung-Il Baik
Shiyan Pan
Mingfang Zhu
Dieter Isheim
Bruce W. Krakauer
David N. Seidman
Publikationsdatum
23.10.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4975-7

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.