Skip to main content
Erschienen in: Microsystem Technologies 6/2021

27.11.2020 | Technical Paper

External temperature sensor assisted a new low power photoplethysmography readout system for accurate measurement of the bio-signs

verfasst von: Rajeev Kumar Pandey, Paul C.-P. Chao

Erschienen in: Microsystem Technologies | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents an external temperature sensor assisted a new low power, time-interleave, wide dynamic range, and low DC drift photoplethysmography (PPG) signal acquisition system to obtain the accurate measurement of various bio signs in real-time. The designed chip incorporates a 2-bit control programmable transimpedance amplifier (TIA), a high order filter, a 3:8 programmable gain amplifier (PGA) and 2 × 2 organic light-emitting diode (OLED) driver. Temperature sensor is used herein to compensate the adverse effect of low-skin-temperature on the PPG signal quality. The analog front-end circuit is implemented in the integrated chip with chip area of 2008 μm × 1377 μm and fabricated via TSMC T18 process. With the standard 1.8 V, the experimental result shows that the measured current sensing range is 20 nA–100 uA. The measured dynamic range of the designed readout circuit is 80 dB. The estimated signal to noise ratio is 60 dB@1 uA, and the measured input referred noise is 60.2 pA/Hz½. The total power consumption of the designed chip is 31.32 µW (readout) + 1.62 mW (OLED driver@100% duty cycle). The non-invasive PPG sensor is applied to the wrist artery of the 40 healthy subjects for sensing the pulsation of the blood vessel. The experimental results show that for every 1 °C decrease in mean ambient temperature tends to 0.06 beats/min, 0.125 mmHg and 0.063 mmHg increase in hear rate (HR), systolic (SBP) and diastolic (DBP), respectively. Similarly, for every 1 °C increase in mean ambient temperature tends to 0.13 beats/min, 0.601 mmHg and 0.121 mmHg increase in HR, SBP and DBP, respectively. The measured accuracy and standard error for the HR estimation are 96%, and − 0.022 ± 2.589 beats/minute, respectively. The oxygen stauration (SpO2) measurement results shows that the mean absolute percentage error is less than 5%. The resultant errors for the SBP and DBP measurement are − 0.318 ± 5.19 mmHg and − 0.5 ± 1.91 mmHg, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmad S, Chen S, Soueidan K, Batkin I, Bolic M, Dajani H, Groza V (2012) Electrocardiogram-assisted blood pressure estimation. IEEE Trans Biomed Eng 59(3):608–618CrossRef Ahmad S, Chen S, Soueidan K, Batkin I, Bolic M, Dajani H, Groza V (2012) Electrocardiogram-assisted blood pressure estimation. IEEE Trans Biomed Eng 59(3):608–618CrossRef
Zurück zum Zitat Bonomi, AG, Schipper F, Eerikäinen LM, Margarito J, Aarts RM, Babaeizadeh S, Morree HM, Dekker LG (2016) Atrial fibrillation detection using photo-plethysmography and acceleration data at the wrist. In: 2016 Computing in Cardiology Conference (CinC) (2016), pp 277–280 Bonomi, AG, Schipper F, Eerikäinen LM, Margarito J, Aarts RM, Babaeizadeh S, Morree HM, Dekker LG (2016) Atrial fibrillation detection using photo-plethysmography and acceleration data at the wrist. In: 2016 Computing in Cardiology Conference (CinC) (2016), pp 277–280
Zurück zum Zitat Bramwell JC, Hill AV (1992) The velocity of the pulse wave in man. Proc R Soc Lond Biol Character 93(652):298–306 Bramwell JC, Hill AV (1992) The velocity of the pulse wave in man. Proc R Soc Lond Biol Character 93(652):298–306
Zurück zum Zitat Cohen Z, Haxha S (2017) Optical-based sensor prototype for continuous monitoring of the blood pressure. IEEE Sens J 17(13):4258–4268CrossRef Cohen Z, Haxha S (2017) Optical-based sensor prototype for continuous monitoring of the blood pressure. IEEE Sens J 17(13):4258–4268CrossRef
Zurück zum Zitat Forouzanfar M, Ahmad S, Batkin I, Dajani HR, Groza VZ, Bolic M (2013) Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. IEEE Trans Biomed Eng 60(7):1814–1824CrossRef Forouzanfar M, Ahmad S, Batkin I, Dajani HR, Groza VZ, Bolic M (2013) Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. IEEE Trans Biomed Eng 60(7):1814–1824CrossRef
Zurück zum Zitat Huang S-C, Hung P-H, Hong C-H, Wang H-M (2014) A new image blood pressure sensor based on PPG, RRT, BPTT, and harmonic balancing. IEEE Sens J 14(10):3685–3692CrossRef Huang S-C, Hung P-H, Hong C-H, Wang H-M (2014) A new image blood pressure sensor based on PPG, RRT, BPTT, and harmonic balancing. IEEE Sens J 14(10):3685–3692CrossRef
Zurück zum Zitat Kao YH, Chao P-CP, Wey CL (2018) Towards maximizing the sensing accuracy of an cuffless, optical blood pressure sensor using a high-order front-end filter. Microsyst Technol 24:4621CrossRef Kao YH, Chao P-CP, Wey CL (2018) Towards maximizing the sensing accuracy of an cuffless, optical blood pressure sensor using a high-order front-end filter. Microsyst Technol 24:4621CrossRef
Zurück zum Zitat Kao YH, Chao P-CP, Wey CL (2019) Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J Sel Top Quantum Electron 25(1):1–10 (Art no. 69000210)CrossRef Kao YH, Chao P-CP, Wey CL (2019) Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J Sel Top Quantum Electron 25(1):1–10 (Art no. 69000210)CrossRef
Zurück zum Zitat Khalil O, Yeh S, Lowery Michael G, Wu X, Hanna C, Kantor S, Jeng T, Kanger JS, Bolt R, de Mul FD (2003) Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin. J Biomed Optics 8(2):191–205CrossRef Khalil O, Yeh S, Lowery Michael G, Wu X, Hanna C, Kantor S, Jeng T, Kanger JS, Bolt R, de Mul FD (2003) Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin. J Biomed Optics 8(2):191–205CrossRef
Zurück zum Zitat Khan M, Pretty CG, Amies AC, Elliott R, Shaw GM, Chase JG (2015) Investigating the effects of temperature on photoplethysmography. IFAC -Papers OnLine,Volume 48, Issue 20, 2015, pp 360–365, ISSN 2405–8963 Khan M, Pretty CG, Amies AC, Elliott R, Shaw GM, Chase JG (2015) Investigating the effects of temperature on photoplethysmography. IFAC -Papers OnLine,Volume 48, Issue 20, 2015, pp 360–365, ISSN 2405–8963
Zurück zum Zitat Lee SY, Cheng CJ (2009) Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Trans Biomed Circuits Syst 3(1):53–64CrossRef Lee SY, Cheng CJ (2009) Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Trans Biomed Circuits Syst 3(1):53–64CrossRef
Zurück zum Zitat Lin Q et al. (2019) A 196 μW, reconfigurable light-to-digital converter with 119 dB dynamic range, for wearable PPG/NIRS sensors. In: 2019 Symposium on VLSI Circuits (2019): C58-C59 Lin Q et al. (2019) A 196 μW, reconfigurable light-to-digital converter with 119 dB dynamic range, for wearable PPG/NIRS sensors. In: 2019 Symposium on VLSI Circuits (2019): C58-C59
Zurück zum Zitat Marefat F et al (2020) A 1-V 8.1 uW PPG-recording front-end with > 92-dB DR using light-to-digital conversion with signal-aware DC subtraction and ambient light removal. IEEE Solid-State Circuits Lett 3:17–20CrossRef Marefat F et al (2020) A 1-V 8.1 uW PPG-recording front-end with > 92-dB DR using light-to-digital conversion with signal-aware DC subtraction and ambient light removal. IEEE Solid-State Circuits Lett 3:17–20CrossRef
Zurück zum Zitat Orozco LM (2013) Programmable-gain transimpedance amplifiers maximize dynamic range in spectroscopy systems. Analog Dev Orozco LM (2013) Programmable-gain transimpedance amplifiers maximize dynamic range in spectroscopy systems. Analog Dev
Zurück zum Zitat Pamula VR, Valero-Sarmiento JM, Yan L, Bozkurt A, Van Hoof C, Van Helleputte N, Verhelst M (2017) A 172 uW compressively sampled photoplethysmographic (PPG) readout ASIC with heart rate estimation directly from compressively sampled data. IEEE Trans Biomed Circuits Syst 11(3):487–496CrossRef Pamula VR, Valero-Sarmiento JM, Yan L, Bozkurt A, Van Hoof C, Van Helleputte N, Verhelst M (2017) A 172 uW compressively sampled photoplethysmographic (PPG) readout ASIC with heart rate estimation directly from compressively sampled data. IEEE Trans Biomed Circuits Syst 11(3):487–496CrossRef
Zurück zum Zitat Sheng SS, Huang SC, Tran TH, Shao KY, Chao PCP, Chiang PY (2016) A 1.5 mW front-end readout circuit for a small-sized melanin sensor. Microsyst Technol 22(6):1449–1465CrossRef Sheng SS, Huang SC, Tran TH, Shao KY, Chao PCP, Chiang PY (2016) A 1.5 mW front-end readout circuit for a small-sized melanin sensor. Microsyst Technol 22(6):1449–1465CrossRef
Zurück zum Zitat Shu Y-S et al. (2020) 26.1 A 4.5 mm2 multimodal biosensing SoC for PPG, ECG, BIOZ and GSR acquisition in consumer wearable devices. In: 2020 IEEE International Solid- State Circuits Conference – (ISSCC) (2020), pp 400–402 Shu Y-S et al. (2020) 26.1 A 4.5 mm2 multimodal biosensing SoC for PPG, ECG, BIOZ and GSR acquisition in consumer wearable devices. In: 2020 IEEE International Solid- State Circuits Conference – (ISSCC) (2020), pp 400–402
Zurück zum Zitat Sommermeyer D, Zou D, Ficker JH, Randerath W, Fischer C, Penzel T, Sanner B, Hedner J, Grote L (2016) Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm. Med Biol Eng Comput 54(7):1111–1121CrossRef Sommermeyer D, Zou D, Ficker JH, Randerath W, Fischer C, Penzel T, Sanner B, Hedner J, Grote L (2016) Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm. Med Biol Eng Comput 54(7):1111–1121CrossRef
Zurück zum Zitat Tang Z, Tamura T, Sekine M, Huang M, Chen W, Yoshida M, Sakatani K, Kobayashi H, Kanaya S (2017) A chair-based unobtrusive Cuffless blood pressure monitoring system based on pulse arrival time. IEEE J Biomed Health Inform 21(5):1194–1205CrossRef Tang Z, Tamura T, Sekine M, Huang M, Chen W, Yoshida M, Sakatani K, Kobayashi H, Kanaya S (2017) A chair-based unobtrusive Cuffless blood pressure monitoring system based on pulse arrival time. IEEE J Biomed Health Inform 21(5):1194–1205CrossRef
Zurück zum Zitat Wong AK, Leung KN, Pun KP, Zhang YT (2010) A 0.5-Hz high-pass cutoff dual-loop transimpedance amplifier for wearable NIR sensing device. IEEE Trans Circuits Systems II Exp Briefs 57(7):531–535CrossRef Wong AK, Leung KN, Pun KP, Zhang YT (2010) A 0.5-Hz high-pass cutoff dual-loop transimpedance amplifier for wearable NIR sensing device. IEEE Trans Circuits Systems II Exp Briefs 57(7):531–535CrossRef
Zurück zum Zitat Wu S, Shu Y, Chiou AY, Huang W, Chen Z, Hsieh H (2020) 9.1 A current-sensing front-end realized by a continuous-time incremental ADC with 12b SAR quantizer and reset-then-open resistive DAC achieving 140dB DR and 8ppm INL at 4kS/s. In: 2020 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2020, pp 154–156, doi: https://doi.org/10.1109/ISSCC19947.2020.9062990 Wu S, Shu Y, Chiou AY, Huang W, Chen Z, Hsieh H (2020) 9.1 A current-sensing front-end realized by a continuous-time incremental ADC with 12b SAR quantizer and reset-then-open resistive DAC achieving 140dB DR and 8ppm INL at 4kS/s. In: 2020 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2020, pp 154–156, doi: https://​doi.​org/​10.​1109/​ISSCC19947.​2020.​9062990
Zurück zum Zitat Yan et al. (2019) Novel deep convolutional neural network for cuff-less blood pressure measurement using ECG and PPG signals. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1917–1920, doi: https://doi.org/10.1109/EMBC.2019.8857108 Yan et al. (2019) Novel deep convolutional neural network for cuff-less blood pressure measurement using ECG and PPG signals. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1917–1920, doi: https://​doi.​org/​10.​1109/​EMBC.​2019.​8857108
Zurück zum Zitat Zheng Y, Yan BP, Zhangand Y-T, Poon CCY (2014) An armband wearable device for overnight and cuff-Less blood pressure measurement. IEEE Trans Biomed Eng, 61(7) Zheng Y, Yan BP, Zhangand Y-T, Poon CCY (2014) An armband wearable device for overnight and cuff-Less blood pressure measurement. IEEE Trans Biomed Eng, 61(7)
Metadaten
Titel
External temperature sensor assisted a new low power photoplethysmography readout system for accurate measurement of the bio-signs
verfasst von
Rajeev Kumar Pandey
Paul C.-P. Chao
Publikationsdatum
27.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-05106-y

Weitere Artikel der Ausgabe 6/2021

Microsystem Technologies 6/2021 Zur Ausgabe

Neuer Inhalt