Skip to main content

2020 | OriginalPaper | Buchkapitel

7. Fabrication of Nanostructured Materials with Rare-Earth Elements for Bioanalytical Applications

verfasst von : Suresh Kumar Kailasa, Janardhan Reddy Koduru, Thriveni Thenepalli

Erschienen in: Rare-Earth Metal Recovery for Green Technologies

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of rare-earth element-based nanomaterials plays an essential role in biomedical applications due to their luminescent (upconversion, downconversion, and permanent luminescence), magnetic properties, and absorption ability of X-rays. Rare-earth elements have been widely used for the fabrication of nanomaterials that are shown attractive properties including absence of blinking, high photostability, large Stokes shifts, extremely narrow emission lines, and long lifetimes, respectively. This book chapter explores the recent applications of rare-earth element-based nanomaterials for the detection of various biomolecules in various biofluids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bouzigues, C., Gacoin, T., & Alexandrou, A. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5, 8488–8505.CrossRef Bouzigues, C., Gacoin, T., & Alexandrou, A. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5, 8488–8505.CrossRef
Zurück zum Zitat Chen, D., & Wang, Y. (2013). Impurity doping: A novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale, 5, 4621–4637.CrossRef Chen, D., & Wang, Y. (2013). Impurity doping: A novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale, 5, 4621–4637.CrossRef
Zurück zum Zitat Chen, H., Guan, Y., Wang, S., Ji, Y., Gong, M., & Wang, L. (2014). Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods. Langmuir, 30, 13085–13091.CrossRef Chen, H., Guan, Y., Wang, S., Ji, Y., Gong, M., & Wang, L. (2014). Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods. Langmuir, 30, 13085–13091.CrossRef
Zurück zum Zitat Cheng, K., Zhang, J., Zhang, L., Wang, L., & Chen, H. (2017). Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods. Spectrochimica Acta A, 171, 168–173.CrossRef Cheng, K., Zhang, J., Zhang, L., Wang, L., & Chen, H. (2017). Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods. Spectrochimica Acta A, 171, 168–173.CrossRef
Zurück zum Zitat Dai, S., Wu, S., Duan, N., & Wang, Z. (2016). A luminescence resonance energy transfer based aptasensor for the mycotoxin ochratoxin A using upconversion nanoparticles and gold nanorods. Microchimica Acta, 183, 1909–1916.CrossRef Dai, S., Wu, S., Duan, N., & Wang, Z. (2016). A luminescence resonance energy transfer based aptasensor for the mycotoxin ochratoxin A using upconversion nanoparticles and gold nanorods. Microchimica Acta, 183, 1909–1916.CrossRef
Zurück zum Zitat Desai, M. L., Jha, S., Basu, H., Singhal, R. K., Sharma, P. K., & Kailasa, S. K. (2018). Microwave-assisted synthesis of water-soluble Eu3+ hybrid carbon dots with enhanced fluorescence for the sensing of Hg2+ ions and imaging of fungal cells. New Journal of Chemistry, 42, 6125–6133.CrossRef Desai, M. L., Jha, S., Basu, H., Singhal, R. K., Sharma, P. K., & Kailasa, S. K. (2018). Microwave-assisted synthesis of water-soluble Eu3+ hybrid carbon dots with enhanced fluorescence for the sensing of Hg2+ ions and imaging of fungal cells. New Journal of Chemistry, 42, 6125–6133.CrossRef
Zurück zum Zitat Dong, L., Yang, Z., Zhang, Y., Zhu, Y., Wang, L., & Wang, L. (2010). Novel luminescent nanoparticles for DNA detection. Spectrochimica Acta A, 75(5), 1530–1534.CrossRef Dong, L., Yang, Z., Zhang, Y., Zhu, Y., Wang, L., & Wang, L. (2010). Novel luminescent nanoparticles for DNA detection. Spectrochimica Acta A, 75(5), 1530–1534.CrossRef
Zurück zum Zitat Duan, N., Wu, S., Zhu, C., et al. (2012). Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 723, 1–6.CrossRef Duan, N., Wu, S., Zhu, C., et al. (2012). Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 723, 1–6.CrossRef
Zurück zum Zitat Escudero, A., Becerro, A. I., Carrillo-Carrión, C., Núñez, N. O., Zyuzin, M. V., Laguna, M., González-Mancebo, D., Ocaña, M., & Parak, W. J. (2017). Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nano, 6(5), 881–921. Escudero, A., Becerro, A. I., Carrillo-Carrión, C., Núñez, N. O., Zyuzin, M. V., Laguna, M., González-Mancebo, D., Ocaña, M., & Parak, W. J. (2017). Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nano, 6(5), 881–921.
Zurück zum Zitat Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P., & Gorris, H. H. (2017). Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Analytical Chemistry, 89, 11825–11830.CrossRef Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P., & Gorris, H. H. (2017). Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Analytical Chemistry, 89, 11825–11830.CrossRef
Zurück zum Zitat Haase, M., & Schäfer, H. (2011). Upconverting nanoparticles. Angewandte Chemie International Edition, 50, 5808–5829.CrossRef Haase, M., & Schäfer, H. (2011). Upconverting nanoparticles. Angewandte Chemie International Edition, 50, 5808–5829.CrossRef
Zurück zum Zitat He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Analytical Chemistry, 88, 1530–1534.CrossRef He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Analytical Chemistry, 88, 1530–1534.CrossRef
Zurück zum Zitat Jiang, P., He, M., Shen, L., Shi, A., & Liu, Z. (2017). A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensors and Actuators B: Chemical, 239, 319–324.CrossRef Jiang, P., He, M., Shen, L., Shi, A., & Liu, Z. (2017). A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensors and Actuators B: Chemical, 239, 319–324.CrossRef
Zurück zum Zitat Jin, B., Wang, S., Lin, M., Jin, Y., Zhang, S., Cui, X., Gong, Y., Li, A., Xu, F., & Lu, T. J. (2017). Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors & Bioelectronics, 90, 525–533.CrossRef Jin, B., Wang, S., Lin, M., Jin, Y., Zhang, S., Cui, X., Gong, Y., Li, A., Xu, F., & Lu, T. J. (2017). Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors & Bioelectronics, 90, 525–533.CrossRef
Zurück zum Zitat Jo, E.-J., Mun, H., & Kim, M.-G. (2016). Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Analytical Chemistry, 88, 2742–2746.CrossRef Jo, E.-J., Mun, H., & Kim, M.-G. (2016). Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Analytical Chemistry, 88, 2742–2746.CrossRef
Zurück zum Zitat Kim, J., Kwon, J. H., Jang, J., Lee, H., Kim, S., Hahn, Y. K., Kim, S. K., Lee, K. H., Lee, S., Pyo, H., Song, C. S., & Lee, J. (2018). Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosensors & Bioelectronics, 112, 209–215.CrossRef Kim, J., Kwon, J. H., Jang, J., Lee, H., Kim, S., Hahn, Y. K., Kim, S. K., Lee, K. H., Lee, S., Pyo, H., Song, C. S., & Lee, J. (2018). Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosensors & Bioelectronics, 112, 209–215.CrossRef
Zurück zum Zitat Kuningas, K., Rantanen, T., Karhunen, U., Lövgren, T., & Soukka, T. (2005). Simultaneous use of time-resolved fluorescence and anti- stokes photoluminescence in a bioaffinity assay. Analytical Chemistry, 77, 2826–2834.CrossRef Kuningas, K., Rantanen, T., Karhunen, U., Lövgren, T., & Soukka, T. (2005). Simultaneous use of time-resolved fluorescence and anti- stokes photoluminescence in a bioaffinity assay. Analytical Chemistry, 77, 2826–2834.CrossRef
Zurück zum Zitat Li, A., Zhao, H., Jin, L., & Zheng, D. (2006). Nucleic acids analysis with nano-Ag-Tb(III) by a resonance light scattering technique. Analytical Sciences, 22(5), 775–779.CrossRef Li, A., Zhao, H., Jin, L., & Zheng, D. (2006). Nucleic acids analysis with nano-Ag-Tb(III) by a resonance light scattering technique. Analytical Sciences, 22(5), 775–779.CrossRef
Zurück zum Zitat Li, X., Wei, L., Pan, L., Yi, Z., Wang, X., Ye, Z., Xiao, L., Li, H. W., & Wang, J. (2018). Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 90, 4807–4814.CrossRef Li, X., Wei, L., Pan, L., Yi, Z., Wang, X., Ye, Z., Xiao, L., Li, H. W., & Wang, J. (2018). Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 90, 4807–4814.CrossRef
Zurück zum Zitat Liang, Z., Wang, X., Zhu, W., Zhang, P., Yang, Y., Sun, C., Zhang, J., Wang, X., Xu, Z., Zhao, Y., Yang, R., Zhao, S., & Zhou, L. (2017). Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Applied Materials & Interfaces, 9, 3497–3504.CrossRef Liang, Z., Wang, X., Zhu, W., Zhang, P., Yang, Y., Sun, C., Zhang, J., Wang, X., Xu, Z., Zhao, Y., Yang, R., Zhao, S., & Zhou, L. (2017). Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Applied Materials & Interfaces, 9, 3497–3504.CrossRef
Zurück zum Zitat Liu, Y., Jia, Q., Guo, Q., Jiang, A., & Zhou, J. (2017). In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Analytical Chemistry, 89, 12299–12305.CrossRef Liu, Y., Jia, Q., Guo, Q., Jiang, A., & Zhou, J. (2017). In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Analytical Chemistry, 89, 12299–12305.CrossRef
Zurück zum Zitat Liu, Y., Tu, D., Zheng, W., Lu, L., You, W., Zhou, S., Huang, P., Li, R., & Chen, X. (2018). A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Research, 11, 3164–3174.CrossRef Liu, Y., Tu, D., Zheng, W., Lu, L., You, W., Zhou, S., Huang, P., Li, R., & Chen, X. (2018). A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Research, 11, 3164–3174.CrossRef
Zurück zum Zitat Luo, Z., Zhang, L., Zeng, R., Su, L., & Tang, D. (2018). Targeted delivery of a γ-glutamyl transpeptidase activatable near-infrared-fluorescent probe for selective cancer imaging. Analytical Chemistry, 90, 2875–2883.CrossRef Luo, Z., Zhang, L., Zeng, R., Su, L., & Tang, D. (2018). Targeted delivery of a γ-glutamyl transpeptidase activatable near-infrared-fluorescent probe for selective cancer imaging. Analytical Chemistry, 90, 2875–2883.CrossRef
Zurück zum Zitat Lv, J., Zhao, S., Wu, S., & Wang, Z. (2017). Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosensors & Bioelectronics, 90, 203–209.CrossRef Lv, J., Zhao, S., Wu, S., & Wang, Z. (2017). Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosensors & Bioelectronics, 90, 203–209.CrossRef
Zurück zum Zitat Ma, L., Liu, F., Lei, Z., & Wang, Z. (2017). A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosensors & Bioelectronics, 87, 638–645.CrossRef Ma, L., Liu, F., Lei, Z., & Wang, Z. (2017). A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosensors & Bioelectronics, 87, 638–645.CrossRef
Zurück zum Zitat Mei, Q. S., Jing, H. R., Li, Y., Yisibashaer, W., Chen, J., Li, B. N., & Zhang, Y. (2016). Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors and Biolelectronics, 75, 427–432.CrossRef Mei, Q. S., Jing, H. R., Li, Y., Yisibashaer, W., Chen, J., Li, B. N., & Zhang, Y. (2016). Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors and Biolelectronics, 75, 427–432.CrossRef
Zurück zum Zitat Mendez-Gonzalez, D., Laurenti, M., Latorre, A., Somoza, A., Vazquez, A., Negredo, A. I., López-Cabarcos, E., Calderón, O. G., Melle, S., & Rubio-Retama, J. (2017). Oligonucleotide sensor based on selective capture of upconversion nanoparticles triggered by target-induced DNA interstrand ligand reaction. ACS Applied Materials & Interfaces, 9, 12272–12281.CrossRef Mendez-Gonzalez, D., Laurenti, M., Latorre, A., Somoza, A., Vazquez, A., Negredo, A. I., López-Cabarcos, E., Calderón, O. G., Melle, S., & Rubio-Retama, J. (2017). Oligonucleotide sensor based on selective capture of upconversion nanoparticles triggered by target-induced DNA interstrand ligand reaction. ACS Applied Materials & Interfaces, 9, 12272–12281.CrossRef
Zurück zum Zitat Näreoja, T., Vehniäinen, M., Lamminmäki, U., Hänninen, P. E., & Härmä, H. (2009). Study on nonspecificity of an immuoassay using Eu-doped polystyrene nanoparticle labels. Journal of Immunological Methods, 345, 80–89.CrossRef Näreoja, T., Vehniäinen, M., Lamminmäki, U., Hänninen, P. E., & Härmä, H. (2009). Study on nonspecificity of an immuoassay using Eu-doped polystyrene nanoparticle labels. Journal of Immunological Methods, 345, 80–89.CrossRef
Zurück zum Zitat Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., & Wiesner, U. (2005). Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters, 2005(5), 113–117. Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., & Wiesner, U. (2005). Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters, 2005(5), 113–117.
Zurück zum Zitat Park, Y. I., Lee, K. T., Suh, Y. D., & Hyeon, T. (2015). Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews, 44, 1302–1317.CrossRef Park, Y. I., Lee, K. T., Suh, Y. D., & Hyeon, T. (2015). Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews, 44, 1302–1317.CrossRef
Zurück zum Zitat Qu, A., Wu, X., Xu, L., Liu, L., Ma, W., Kuang, H., & Xu, C. (2017). SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale, 9, 3865–3872.CrossRef Qu, A., Wu, X., Xu, L., Liu, L., Ma, W., Kuang, H., & Xu, C. (2017). SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale, 9, 3865–3872.CrossRef
Zurück zum Zitat Rafique, R., Kailasa, S. K., & Park, T. J. (2019). Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends in Analytical Chemistry, 120, 115646.CrossRef Rafique, R., Kailasa, S. K., & Park, T. J. (2019). Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends in Analytical Chemistry, 120, 115646.CrossRef
Zurück zum Zitat Son, A., Dhirapong, A., Dosev, D. K., Kennedy, I. M., Weiss, R. H., & Hristova, K. R. (2008b). Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Analytical and Bioanalytical Chemistry, 390, 1829–1835.CrossRef Son, A., Dhirapong, A., Dosev, D. K., Kennedy, I. M., Weiss, R. H., & Hristova, K. R. (2008b). Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Analytical and Bioanalytical Chemistry, 390, 1829–1835.CrossRef
Zurück zum Zitat Son, A., Dosev, D., Nichkova, M., Ma, Z., Kennedy, I. M., Scow, K. M., & Hristova, K. R. (2007). Quantitative DNA hybridization in solution using magnetic/luminescent core shell nanoparticles. Analytical Biochemistry, 370, 186–194.CrossRef Son, A., Dosev, D., Nichkova, M., Ma, Z., Kennedy, I. M., Scow, K. M., & Hristova, K. R. (2007). Quantitative DNA hybridization in solution using magnetic/luminescent core shell nanoparticles. Analytical Biochemistry, 370, 186–194.CrossRef
Zurück zum Zitat Son, A., Nichkova, M., Dosev, D., Kennedy, I. M., & Hristova, K. R. (2008a). Luminescent lanthanide nanoparticles as labels in DNA microarrays for quantification of methyl tertiary butyl ether degrading bacteria. Journal of Nanoscience and Nanotechnology, 8, 2463–2467. Son, A., Nichkova, M., Dosev, D., Kennedy, I. M., & Hristova, K. R. (2008a). Luminescent lanthanide nanoparticles as labels in DNA microarrays for quantification of methyl tertiary butyl ether degrading bacteria. Journal of Nanoscience and Nanotechnology, 8, 2463–2467.
Zurück zum Zitat Song, X., Zhang, J., Yue, Z., Wang, Z., Liu, Z., & Zhang, S. (2017). Dual-activator codoped upconversion nanoprobe with core–multishell structure for in vitro and in vivo detection of hydroxyl radical. Analytical Chemistry, 89, 11021–11026.CrossRef Song, X., Zhang, J., Yue, Z., Wang, Z., Liu, Z., & Zhang, S. (2017). Dual-activator codoped upconversion nanoprobe with core–multishell structure for in vitro and in vivo detection of hydroxyl radical. Analytical Chemistry, 89, 11021–11026.CrossRef
Zurück zum Zitat Tsang, M. K., Ye, W., Wang, G., Li, J., Yang, M., & Hao, J. (2016). Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano, 10, 598–605.CrossRef Tsang, M. K., Ye, W., Wang, G., Li, J., Yang, M., & Hao, J. (2016). Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano, 10, 598–605.CrossRef
Zurück zum Zitat Tsien, R. Y. (1988). Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends in Neurosciences, 11, 419–424.CrossRef Tsien, R. Y. (1988). Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends in Neurosciences, 11, 419–424.CrossRef
Zurück zum Zitat Tu, D., Liu, L., Ju, Q., et al. (2011). Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angewandte Chemie International Edition, 50, 6306–6310.CrossRef Tu, D., Liu, L., Ju, Q., et al. (2011). Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angewandte Chemie International Edition, 50, 6306–6310.CrossRef
Zurück zum Zitat Tu, D., Liu, Y., Zhu, H., & Chen, X. (2013). Optical/magnetic multimodal bioprobes based on lanthanide-doped inorganic nanocrystals. Chemistry - A European Journal, 19, 5516–5527.CrossRef Tu, D., Liu, Y., Zhu, H., & Chen, X. (2013). Optical/magnetic multimodal bioprobes based on lanthanide-doped inorganic nanocrystals. Chemistry - A European Journal, 19, 5516–5527.CrossRef
Zurück zum Zitat van de Rijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedbala, R. S., & Tanke, H. J. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19, 273–276.CrossRef van de Rijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedbala, R. S., & Tanke, H. J. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19, 273–276.CrossRef
Zurück zum Zitat van den Eeckhout, K., Poelman, D., & Smet, P. (2013). Persistent luminescence in non-Eu2+-doped compounds: A review. Materials, 6, 2789.CrossRef van den Eeckhout, K., Poelman, D., & Smet, P. (2013). Persistent luminescence in non-Eu2+-doped compounds: A review. Materials, 6, 2789.CrossRef
Zurück zum Zitat Wang, F., Li, W., Wang, J., Ren, J., & Qu, X. (2015). Detection of telomerase on upconversion nanoparticle modified cellulose paper. Chemical Communications, 51, 11630–11633.CrossRef Wang, F., Li, W., Wang, J., Ren, J., & Qu, X. (2015). Detection of telomerase on upconversion nanoparticle modified cellulose paper. Chemical Communications, 51, 11630–11633.CrossRef
Zurück zum Zitat Wang, L., Li, P., & Wang, L. (2008). Luminescent and hydrophilic LaF3-polymer nanocomposite for DNA detection. Luminescence, 24, 39–44.CrossRef Wang, L., Li, P., & Wang, L. (2008). Luminescent and hydrophilic LaF3-polymer nanocomposite for DNA detection. Luminescence, 24, 39–44.CrossRef
Zurück zum Zitat Wang, M., Hou, W., Mi, C. C., Wang, W. X., Xu, Z. R., Teng, H. H., Mao, C. B., & Xu, S. K. (2009). Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry, 81, 8783–8789.CrossRef Wang, M., Hou, W., Mi, C. C., Wang, W. X., Xu, Z. R., Teng, H. H., Mao, C. B., & Xu, S. K. (2009). Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry, 81, 8783–8789.CrossRef
Zurück zum Zitat Wu, S., Duan, N., Shi, Z., Fang, C., & Wang, Z. (2014). Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry, 86, 3100–3107.CrossRef Wu, S., Duan, N., Shi, Z., Fang, C., & Wang, Z. (2014). Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry, 86, 3100–3107.CrossRef
Zurück zum Zitat Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., & Guo, L.-H. (2004). Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Letters, 4, 2191–2196.CrossRef Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., & Guo, L.-H. (2004). Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Letters, 4, 2191–2196.CrossRef
Zurück zum Zitat You, M., Lin, M., Gong, Y., Wang, S., Li, A., Ji, L., Zhao, H., Ling, K., Wen, T., Huang, Y., Gao, D., Ma, Q., Wang, T., Ma, A., Li, X., & Xu, F. (2017). Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 11, 6261–6270.CrossRef You, M., Lin, M., Gong, Y., Wang, S., Li, A., Ji, L., Zhao, H., Ling, K., Wen, T., Huang, Y., Gao, D., Ma, Q., Wang, T., Ma, A., Li, X., & Xu, F. (2017). Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 11, 6261–6270.CrossRef
Zurück zum Zitat Zhang, J., Wang, S., Gao, N., Feng, D., Wang, L., & Chen, H. (2015). Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosensors & Bioelectronics, 72, 282–287. Zhang, J., Wang, S., Gao, N., Feng, D., Wang, L., & Chen, H. (2015). Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosensors & Bioelectronics, 72, 282–287.
Zurück zum Zitat Zhang, L., Ling, B., Wang, L., & Chen, H. (2017). A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta, 172, 95–101.CrossRef Zhang, L., Ling, B., Wang, L., & Chen, H. (2017). A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta, 172, 95–101.CrossRef
Zurück zum Zitat Zhao, B., & Li, Y. (2018). Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta, 179, 478–484.CrossRef Zhao, B., & Li, Y. (2018). Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta, 179, 478–484.CrossRef
Metadaten
Titel
Fabrication of Nanostructured Materials with Rare-Earth Elements for Bioanalytical Applications
verfasst von
Suresh Kumar Kailasa
Janardhan Reddy Koduru
Thriveni Thenepalli
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-38106-6_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.