Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

12.11.2021 | ORIGINAL ARTICLE

Flow behavior and microstructure evolution of Ti-6Al-4V titanium alloy produced by selective laser melting compared to wrought

verfasst von: Denis Salikhyanov, Valeriya Veselova, Vladimir Volkov

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, selective laser melting (SLM) represents an option for manufacturing parts from titanium alloys, especially from Ti-6Al-4V alloy. However, mechanical properties of parts made of SLM-produced Ti-6Al-4V, such as ductility and fatigue resistance, are significantly lower than that of wrought ones. The promising way to improve mechanical properties of SLM parts without expensive hot isostatic pressing can be combination SLM and deformation post-processing. Therefore, the goal of the present study is to investigate the flow stress behavior and microstructure evolution of Ti-6Al-4V fabricated by SLM in a wide temperature range in comparison with conventional manufactured material. In contrast to wrought material, SLM-produced Ti-6Al-4V shows high plastic flow instability at test temperatures of 20–900 °С, which was demonstrated via temperature sensitivity and softening rate. FEM-simulation of hot isothermal compression of samples was conducted in order to compare the deformation inhomogeneity between SLM-produced and wrought materials, namely, local strains e in the severe plastic deformation and dead metal zones. The microstructure in these characteristic zones of both materials deformed in (α + β)-field was examined by means of optical microscopy. The type of microstructure and grain size of the SLM-produced and wrought material were studied. It turned out that the deformation of SLM-produced Ti-6Al-4V at a lower temperature (800 °C) and a higher strain rate (1 s−1) makes it possible to obtain ultrafine-grained microstructure. This, in turn, opens the door to the production of Ti-6Al-4V parts with high mechanical properties via processing route SLM + metal forming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The collective use center “Plastometriya” of the Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences
 
Literatur
1.
Zurück zum Zitat Singla AK, Banerjee M, Sharma A, Singh J, Bansal A, Gupta MK, Khanna N, Shahi AS, Goyal DK (2021) Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments. J Manuf Process 64:161–187CrossRef Singla AK, Banerjee M, Sharma A, Singh J, Bansal A, Gupta MK, Khanna N, Shahi AS, Goyal DK (2021) Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments. J Manuf Process 64:161–187CrossRef
2.
Zurück zum Zitat Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:1–23CrossRef Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:1–23CrossRef
3.
Zurück zum Zitat Kasperovich G, Hausmann J (2015) Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol 220:202–214CrossRef Kasperovich G, Hausmann J (2015) Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol 220:202–214CrossRef
4.
Zurück zum Zitat Vrancken B, Thijs L, Kruth J-P, Humbeeck JV (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541:177–185CrossRef Vrancken B, Thijs L, Kruth J-P, Humbeeck JV (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541:177–185CrossRef
5.
Zurück zum Zitat Yan X, Yin S, Chen C, Huang C, Bolot R, Lupoi R, Kuang M, Ma W, Coddet C, Liao H, Liu M (2018) Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloys Compd 764:1056–1071CrossRef Yan X, Yin S, Chen C, Huang C, Bolot R, Lupoi R, Kuang M, Ma W, Coddet C, Liao H, Liu M (2018) Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloys Compd 764:1056–1071CrossRef
6.
Zurück zum Zitat Gupta MK, Singla AK, Ji H, Song Q, Liu Z, Cai W, Mia M, Khanna N, Krolczyk GM (2020) Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol 9(5):9506–9522CrossRef Gupta MK, Singla AK, Ji H, Song Q, Liu Z, Cai W, Mia M, Khanna N, Krolczyk GM (2020) Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol 9(5):9506–9522CrossRef
7.
Zurück zum Zitat Yasa E, Deckers J, Kruth J-P (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17(5):312–327CrossRef Yasa E, Deckers J, Kruth J-P (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17(5):312–327CrossRef
8.
Zurück zum Zitat Waqar S, Liu J, Sun Q, Guo K, Sun J (2020) Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel. Rapid Prototyp J 26(10):1739–1749CrossRef Waqar S, Liu J, Sun Q, Guo K, Sun J (2020) Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel. Rapid Prototyp J 26(10):1739–1749CrossRef
9.
Zurück zum Zitat Wycisk E, Solbach A, Siddique S, Herzog D, Walther F, Emmelmann C (2014) Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys Procedia 56:371–378CrossRef Wycisk E, Solbach A, Siddique S, Herzog D, Walther F, Emmelmann C (2014) Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys Procedia 56:371–378CrossRef
10.
Zurück zum Zitat Dutta B, Froes FH (2017) The additive manufacturing (AM) of titanium alloys. Met Powder Rep 72:96–106CrossRef Dutta B, Froes FH (2017) The additive manufacturing (AM) of titanium alloys. Met Powder Rep 72:96–106CrossRef
11.
Zurück zum Zitat Zhang M, Liu C, Shi X (2016) Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting. Appl Sci 6(11):1–7CrossRef Zhang M, Liu C, Shi X (2016) Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting. Appl Sci 6(11):1–7CrossRef
12.
Zurück zum Zitat Williams SW, Martina F, Addison AC (2016) Wire + arc additive manufacturing. Mater Sci Technol 32(7):641–647CrossRef Williams SW, Martina F, Addison AC (2016) Wire + arc additive manufacturing. Mater Sci Technol 32(7):641–647CrossRef
13.
Zurück zum Zitat Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360CrossRef Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360CrossRef
14.
Zurück zum Zitat Friel RJ, Harris R (2013) Ultrasonic additive manufacturing. a hybrid production process for novel functional products. Procedia CIRP 6:35–40CrossRef Friel RJ, Harris R (2013) Ultrasonic additive manufacturing. a hybrid production process for novel functional products. Procedia CIRP 6:35–40CrossRef
15.
Zurück zum Zitat Duarte VR, Rodrigues TA, Schell N, Miranda RM, Oliveira JP, Santos TG (2020) Hot forging wire and arc additive manufacturing (HF-WAAM). Addit Manuf 35:1–10 Duarte VR, Rodrigues TA, Schell N, Miranda RM, Oliveira JP, Santos TG (2020) Hot forging wire and arc additive manufacturing (HF-WAAM). Addit Manuf 35:1–10
16.
Zurück zum Zitat Semiatin SL, Kobryn PA, Roush ED, Furrer DJ, Howson TE, Boyer RR, Chellman DJ (2001) Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms. Metall Mater Trans A 32(7):1801–1811CrossRef Semiatin SL, Kobryn PA, Roush ED, Furrer DJ, Howson TE, Boyer RR, Chellman DJ (2001) Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms. Metall Mater Trans A 32(7):1801–1811CrossRef
17.
Zurück zum Zitat Sizova I, Bambach M (2018) Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing. J Mater Process Technol 256:154–159CrossRef Sizova I, Bambach M (2018) Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing. J Mater Process Technol 256:154–159CrossRef
18.
Zurück zum Zitat Bambach M, Sizova I, Emdadi A (2019) Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. J Manuf Process 37:150–158CrossRef Bambach M, Sizova I, Emdadi A (2019) Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. J Manuf Process 37:150–158CrossRef
19.
Zurück zum Zitat Bambach M, Sizova I, Szyndler J, Bennett J, Hyatt G, Cao J, Papke T, Merklein M (2021) On the hot deformation behavior of Ti-6Al-4V made by additive manufacturing. J Mater Proc Technol 288:116840CrossRef Bambach M, Sizova I, Szyndler J, Bennett J, Hyatt G, Cao J, Papke T, Merklein M (2021) On the hot deformation behavior of Ti-6Al-4V made by additive manufacturing. J Mater Proc Technol 288:116840CrossRef
20.
Zurück zum Zitat Tao P, Zhong J, Li H (2019) Microstructure, mechanical properties, and constitutive models for Ti–6Al–4V alloy fabricated by selective laser melting (SLM). Metals 9(4):447CrossRef Tao P, Zhong J, Li H (2019) Microstructure, mechanical properties, and constitutive models for Ti–6Al–4V alloy fabricated by selective laser melting (SLM). Metals 9(4):447CrossRef
21.
Zurück zum Zitat Motoyama Y, Tokunaga H, Kajino S, Okane T (2021) Stress–strain behavior of a selective laser melted Ti-6Al-4V at strain rates of 0.001–1/s and temperatures 20–1000 °C. J Mater Proc Technol 294:117141CrossRef Motoyama Y, Tokunaga H, Kajino S, Okane T (2021) Stress–strain behavior of a selective laser melted Ti-6Al-4V at strain rates of 0.001–1/s and temperatures 20–1000 °C. J Mater Proc Technol 294:117141CrossRef
22.
Zurück zum Zitat Semiatin SL, Seetharaman V, Weiss I (1999) Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater Sci Eng A 263:257–271CrossRef Semiatin SL, Seetharaman V, Weiss I (1999) Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater Sci Eng A 263:257–271CrossRef
23.
Zurück zum Zitat Guan RG, Je YT, Zhao ZY, Lee CS (2012) Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process. Mater Des 36:796–803CrossRef Guan RG, Je YT, Zhao ZY, Lee CS (2012) Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process. Mater Des 36:796–803CrossRef
24.
Zurück zum Zitat Perumal B, Rist MA, Gungor S, Brooks JW, Fitzpatrick ME (2016) The effect of hot deformation parameters on microstructure evolution of the α-phase in Ti-6Al-4V. Metall Mater Trans A 47:4128–4136CrossRef Perumal B, Rist MA, Gungor S, Brooks JW, Fitzpatrick ME (2016) The effect of hot deformation parameters on microstructure evolution of the α-phase in Ti-6Al-4V. Metall Mater Trans A 47:4128–4136CrossRef
25.
Zurück zum Zitat Lee RS, Lin HC (1998) Process design based on the deformation mechanism for the non-isothermal forging of Ti–6Al–4V alloy. J Mater Process Technol 79:224–235CrossRef Lee RS, Lin HC (1998) Process design based on the deformation mechanism for the non-isothermal forging of Ti–6Al–4V alloy. J Mater Process Technol 79:224–235CrossRef
26.
Zurück zum Zitat Semiatin SL, Bieler TR (2001) The effect of Alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure. Acta Mater 49:3565–3573CrossRef Semiatin SL, Bieler TR (2001) The effect of Alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure. Acta Mater 49:3565–3573CrossRef
27.
Zurück zum Zitat Dziubińska A, Majerski K, Winiarski G (2017) Investigation of the effect of forging temperature on the microstructure of grade 5 titanium ELI. Adv Sci Technol 11(4):147–158 Dziubińska A, Majerski K, Winiarski G (2017) Investigation of the effect of forging temperature on the microstructure of grade 5 titanium ELI. Adv Sci Technol 11(4):147–158
28.
Zurück zum Zitat Luo J, Li M, Li H, Yu W (2009) Effect of the strain on the deformation behavior of isothermally compressed Ti–6Al–4V alloy. Mater Sci Eng A 505:88–95CrossRef Luo J, Li M, Li H, Yu W (2009) Effect of the strain on the deformation behavior of isothermally compressed Ti–6Al–4V alloy. Mater Sci Eng A 505:88–95CrossRef
29.
Zurück zum Zitat Beese AM, Carroll BE (2016) Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock. JOM 68(3):724–734CrossRef Beese AM, Carroll BE (2016) Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock. JOM 68(3):724–734CrossRef
30.
Zurück zum Zitat Mamedova A, Ozturka H, Makasa T (2017) Investigation of mechanical and microstructural properties of Ti-6Al-4V alloy depending on hot forging process parameters. Procedia Eng 207:2155–2160CrossRef Mamedova A, Ozturka H, Makasa T (2017) Investigation of mechanical and microstructural properties of Ti-6Al-4V alloy depending on hot forging process parameters. Procedia Eng 207:2155–2160CrossRef
31.
Zurück zum Zitat Qiu C, Adkins NJE, Attallah MM (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A 578:230–239CrossRef Qiu C, Adkins NJE, Attallah MM (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A 578:230–239CrossRef
32.
Zurück zum Zitat Facchini L, Magalini E, Robotti P (2010) Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J 16(6):450–459CrossRef Facchini L, Magalini E, Robotti P (2010) Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J 16(6):450–459CrossRef
33.
Zurück zum Zitat Popovich AA, Sufiyarov VS, Borisov EV et al (2016) Anisotropy of mechanical properties of products produced by selective laser melting method of powder materials. Proceedings of higher schools. Powder Metallurgy and Functional Coatings 3:4–11 (in Russian) Popovich AA, Sufiyarov VS, Borisov EV et al (2016) Anisotropy of mechanical properties of products produced by selective laser melting method of powder materials. Proceedings of higher schools. Powder Metallurgy and Functional Coatings 3:4–11 (in Russian)
34.
Zurück zum Zitat Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef
35.
Zurück zum Zitat Loginov YN, Gladkovskii SV, Potapov AI, Fomin AA, Salikhyanov DR (2015) Investigation into the deformation resistance of polycrystalline iridium. Russ J Non-Ferr Met 56(5):532–539CrossRef Loginov YN, Gladkovskii SV, Potapov AI, Fomin AA, Salikhyanov DR (2015) Investigation into the deformation resistance of polycrystalline iridium. Russ J Non-Ferr Met 56(5):532–539CrossRef
36.
Zurück zum Zitat Stolyarov VV (2010) Structure and properties of ultrafine-grained VT6 titanium alloy obtained by equal-channel angular pressing. Mašinostroenie i inženernoe obrazovanie 2:30–36 (in Russian) Stolyarov VV (2010) Structure and properties of ultrafine-grained VT6 titanium alloy obtained by equal-channel angular pressing. Mašinostroenie i inženernoe obrazovanie 2:30–36 (in Russian)
37.
Zurück zum Zitat Miller RM, Bieler TR, Semiatin SL (1999) Flow softening during hot working of Ti–6Al–4V with a lamellar colony microstructure. Scr Mater 40:1387–1393CrossRef Miller RM, Bieler TR, Semiatin SL (1999) Flow softening during hot working of Ti–6Al–4V with a lamellar colony microstructure. Scr Mater 40:1387–1393CrossRef
38.
Zurück zum Zitat Li P-H, Guo W-G, Huang W-D (2015) Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures. Mater Sci Eng A 647:34–42CrossRef Li P-H, Guo W-G, Huang W-D (2015) Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures. Mater Sci Eng A 647:34–42CrossRef
39.
Zurück zum Zitat Biswas N, Ding JL, Balla VK, Field DP, Bandyopadhyay A (2012) Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater Sci Eng A 549:213–221CrossRef Biswas N, Ding JL, Balla VK, Field DP, Bandyopadhyay A (2012) Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater Sci Eng A 549:213–221CrossRef
40.
Zurück zum Zitat Loginov YN, Ershov AA (2012) The effect of the hardening curve type on localization of deformation during upsetting of titanium billets. Titan 35(1):22–28 (in Russian) Loginov YN, Ershov AA (2012) The effect of the hardening curve type on localization of deformation during upsetting of titanium billets. Titan 35(1):22–28 (in Russian)
41.
Zurück zum Zitat Gil Mur FX, Rodríguez D, Planell JA (1996) Influence of tempering temperature and time on the α′-Ti-6Al-4V martensite. J Alloys Compd 234(2):287–289CrossRef Gil Mur FX, Rodríguez D, Planell JA (1996) Influence of tempering temperature and time on the α′-Ti-6Al-4V martensite. J Alloys Compd 234(2):287–289CrossRef
42.
Zurück zum Zitat Zhang ZX, Qu SJ, Feng AH, Shen J, Chen DL (2017) Hot deformation behavior of Ti-6Al- 4V alloy: Effect of initial microstructure. J Alloys Compd 718:170–181CrossRef Zhang ZX, Qu SJ, Feng AH, Shen J, Chen DL (2017) Hot deformation behavior of Ti-6Al- 4V alloy: Effect of initial microstructure. J Alloys Compd 718:170–181CrossRef
Metadaten
Titel
Flow behavior and microstructure evolution of Ti-6Al-4V titanium alloy produced by selective laser melting compared to wrought
verfasst von
Denis Salikhyanov
Valeriya Veselova
Vladimir Volkov
Publikationsdatum
12.11.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-08000-7

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.