Skip to main content
Erschienen in: Computational Mechanics 4/2014

01.10.2014 | Original Paper

Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation

verfasst von: Ming-Chen Hsu, David Kamensky, Yuri Bazilevs, Michael S. Sacks, Thomas J. R. Hughes

Erschienen in: Computational Mechanics | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a framework that combines variational immersed-boundary and arbitrary Lagrangian–Eulerian methods for fluid–structure interaction (FSI) simulation of a bioprosthetic heart valve implanted in an artery that is allowed to deform in the model. We find that the variational immersed-boundary method for FSI remains robust and effective for heart valve analysis when the background fluid mesh undergoes deformations corresponding to the expansion and contraction of the elastic artery. Furthermore, the computations presented in this work show that the arterial wall deformation contributes significantly to the realism of the simulation results, leading to flow rates and valve motions that more closely resemble those observed in practice.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Windkessel translates from German to “air chamber”, and likely refers to Hales’ original analogy between arterial compliance and the air-filled cavities used to smooth hose output from eighteenth-century fire engines.
 
Literatur
1.
Zurück zum Zitat Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080CrossRef Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080CrossRef
2.
Zurück zum Zitat Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048CrossRef Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048CrossRef
3.
Zurück zum Zitat Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55:135–144CrossRef Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55:135–144CrossRef
4.
Zurück zum Zitat Hales S (1733) Statical essays: containing haemastaticks: or, an account of some hydraulick and hydrostatical experiments made on the blood and blood-vessels of animals. W. Innys and R. Manby; T. Woodward, London Hales S (1733) Statical essays: containing haemastaticks: or, an account of some hydraulick and hydrostatical experiments made on the blood and blood-vessels of animals. W. Innys and R. Manby; T. Woodward, London
5.
Zurück zum Zitat Frank O (1899) Die grundform des arteriellen pulses. Erste abhandlung. Mathematische analyse. Zeitschrift für Biologie 37:485–526 Frank O (1899) Die grundform des arteriellen pulses. Erste abhandlung. Mathematische analyse. Zeitschrift für Biologie 37:485–526
6.
Zurück zum Zitat Sagawa K, Lie RK, Schaefer J (1990) Translation of otto Frank’s paper “Die Grundform des arteriellen pulses” Zeitschrift für Biologie 37: 483–526 (1899). J Mol Cell Cardiol 22(3):253–254 Sagawa K, Lie RK, Schaefer J (1990) Translation of otto Frank’s paper “Die Grundform des arteriellen pulses” Zeitschrift für Biologie 37: 483–526 (1899). J Mol Cell Cardiol 22(3):253–254
7.
Zurück zum Zitat Frank O (1990) The basic shape of the arterial pulse. first treatise: mathematical analysis. J Mol Cell Cardiol 22(3):255–277CrossRef Frank O (1990) The basic shape of the arterial pulse. first treatise: mathematical analysis. J Mol Cell Cardiol 22(3):255–277CrossRef
8.
Zurück zum Zitat Westerhof N, Lankhaar J-W, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47(2):131–141CrossRef Westerhof N, Lankhaar J-W, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47(2):131–141CrossRef
9.
Zurück zum Zitat Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2(2):121–143CrossRef Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2(2):121–143CrossRef
10.
Zurück zum Zitat Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 276:H81–88 Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 276:H81–88
11.
Zurück zum Zitat Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796MATHMathSciNetCrossRef Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796MATHMathSciNetCrossRef
12.
Zurück zum Zitat Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2014) A variational immersed boundary framework for fluid-structure interaction: Isogeometric implementation and application to bioprosthetic heart valves. Comput Methods Appl Mech Eng. In review. Also appeared as ICES REPORT 14–12, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, May 2014 Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2014) A variational immersed boundary framework for fluid-structure interaction: Isogeometric implementation and application to bioprosthetic heart valves. Comput Methods Appl Mech Eng. In review. Also appeared as ICES REPORT 14–12, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, May 2014
13.
Zurück zum Zitat Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21CrossRef Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21CrossRef
16.
Zurück zum Zitat De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112CrossRef De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112CrossRef
17.
Zurück zum Zitat De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712CrossRef De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712CrossRef
18.
Zurück zum Zitat Astorino M, Gerbeau J-F, Pantz O, Traoré K-F (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198:3603–3612MATHCrossRef Astorino M, Gerbeau J-F, Pantz O, Traoré K-F (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198:3603–3612MATHCrossRef
19.
Zurück zum Zitat Astorino M, Hamers J, Shadden SC, Gerbeau J-F (2012) A robust and efficient valve model based on resistive immersed surfaces. Int J Numer Method Biomed Eng 28(9):937–959MathSciNetCrossRef Astorino M, Hamers J, Shadden SC, Gerbeau J-F (2012) A robust and efficient valve model based on resistive immersed surfaces. Int J Numer Method Biomed Eng 28(9):937–959MathSciNetCrossRef
20.
Zurück zum Zitat Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Method Biomed Eng 28:317–345MATHMathSciNetCrossRef Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Method Biomed Eng 28:317–345MATHMathSciNetCrossRef
21.
Zurück zum Zitat Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257(0):103–116 Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257(0):103–116
22.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MATHMathSciNetCrossRef Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MATHMathSciNetCrossRef
23.
Zurück zum Zitat Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723MATHCrossRef Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723MATHCrossRef
24.
Zurück zum Zitat Donea J, Huerta A, Ponthot J-P, Rodriguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian methods. In encyclopedia of computational mechanics, Vol 3 Fluids, chapter 14. Wiley Donea J, Huerta A, Ponthot J-P, Rodriguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian methods. In encyclopedia of computational mechanics, Vol 3 Fluids, chapter 14. Wiley
25.
Zurück zum Zitat Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MATHMathSciNetCrossRef Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MATHMathSciNetCrossRef
26.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MATHMathSciNetCrossRef Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MATHMathSciNetCrossRef
27.
28.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36CrossRef Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36CrossRef
29.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94MATHCrossRef Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94MATHCrossRef
30.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63MATHCrossRef Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63MATHCrossRef
31.
Zurück zum Zitat Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032MATHCrossRef Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032MATHCrossRef
32.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MATHMathSciNetCrossRef
33.
Zurück zum Zitat Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201– 1218 Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201– 1218
34.
Zurück zum Zitat Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130MATHCrossRef Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130MATHCrossRef
35.
Zurück zum Zitat Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11MATHCrossRef Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11MATHCrossRef
36.
Zurück zum Zitat Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces. Int J Numer Methods Fluids 54:1021–1030MATHCrossRef Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces. Int J Numer Methods Fluids 54:1021–1030MATHCrossRef
37.
Zurück zum Zitat Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE ( 2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech, Accepted for publication Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE ( 2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech, Accepted for publication
38.
Zurück zum Zitat Wick T (2013) Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations. Comput Mech, 52(5) Wick T (2013) Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations. Comput Mech, 52(5)
39.
Zurück zum Zitat Wick T (2014) Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput Mech 53(1):29–43MATHMathSciNetCrossRef Wick T (2014) Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput Mech 53(1):29–43MATHMathSciNetCrossRef
40.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRef
41.
Zurück zum Zitat Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582MATHMathSciNetCrossRef Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582MATHMathSciNetCrossRef
42.
Zurück zum Zitat Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83:155–165CrossRef Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83:155–165CrossRef
43.
Zurück zum Zitat Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30:731–763MATHMathSciNetCrossRef Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30:731–763MATHMathSciNetCrossRef
44.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef
45.
Zurück zum Zitat Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comput 33:1181–1211MATHMathSciNetCrossRef Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comput 33:1181–1211MATHMathSciNetCrossRef
46.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225MathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225MathSciNetCrossRef
47.
Zurück zum Zitat Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36:9–15MATHMathSciNetCrossRef Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36:9–15MATHMathSciNetCrossRef
48.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833MATHMathSciNetCrossRef Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833MATHMathSciNetCrossRef
49.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MATHMathSciNetCrossRef
50.
Zurück zum Zitat Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MATHMathSciNetCrossRef Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MATHMathSciNetCrossRef
51.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77– 89 Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77– 89
52.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3– 16 Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3– 16
53.
Zurück zum Zitat Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42:131–150 Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42:131–150
54.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef
55.
56.
Zurück zum Zitat Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862MATHMathSciNetCrossRef Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862MATHMathSciNetCrossRef
57.
Zurück zum Zitat Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790MATHMathSciNetCrossRef Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790MATHMathSciNetCrossRef
58.
59.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MATHMathSciNetCrossRef Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MATHMathSciNetCrossRef
60.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, ChichesterCrossRef Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, ChichesterCrossRef
61.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22:1230002CrossRef Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22:1230002CrossRef
62.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and Space-Time methods. Arch Comput Methods Eng. doi:10.1007/s11831-014-9113-0 Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and Space-Time methods. Arch Comput Methods Eng. doi:10.​1007/​s11831-014-9113-0
63.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng. doi:10.1007/s11831-014-9119-7 Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng. doi:10.​1007/​s11831-014-9119-7
64.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MATHMathSciNetCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MATHMathSciNetCrossRef
65.
66.
Zurück zum Zitat Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430MATHCrossRef Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430MATHCrossRef
67.
Zurück zum Zitat Hughes TJR, Mazzei L, Oberai AA, Wray A (2001) The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512CrossRef Hughes TJR, Mazzei L, Oberai AA, Wray A (2001) The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512CrossRef
68.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MATHMathSciNetCrossRef Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MATHMathSciNetCrossRef
69.
Zurück zum Zitat Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In E. Stein, R. de Borst, and TJR Hughes (eds), Encyclopedia of Computational Mechanics, vol 3 Fluids, chapter 2. Wiley Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In E. Stein, R. de Borst, and TJR Hughes (eds), Encyclopedia of Computational Mechanics, vol 3 Fluids, chapter 2. Wiley
70.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MATHCrossRef Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MATHCrossRef
71.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900MATHMathSciNetCrossRef Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900MATHMathSciNetCrossRef
72.
Zurück zum Zitat Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840MATHMathSciNetCrossRef Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840MATHMathSciNetCrossRef
73.
Zurück zum Zitat Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, SwedenMATH Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, SwedenMATH
74.
Zurück zum Zitat Brenner SC, Scott LR (2002) The mathematical theory of finite element methods, 2nd edn. Springer, BerlinMATHCrossRef Brenner SC, Scott LR (2002) The mathematical theory of finite element methods, 2nd edn. Springer, BerlinMATHCrossRef
75.
76.
Zurück zum Zitat Evans JA, Hughes TJR (2013) Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Comput Methods Appl Mech Eng 123:259–290MATHMathSciNet Evans JA, Hughes TJR (2013) Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Comput Methods Appl Mech Eng 123:259–290MATHMathSciNet
77.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRef Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRef
78.
Zurück zum Zitat Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHMathSciNetCrossRef Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHMathSciNetCrossRef
79.
Zurück zum Zitat Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126MATHCrossRef Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126MATHCrossRef
80.
Zurück zum Zitat Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206MATHMathSciNetCrossRef Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206MATHMathSciNetCrossRef
81.
Zurück zum Zitat Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ \(\beta \) shock-capturing. Comput Fluids 36:147–159MATHCrossRef Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ \(\beta \) shock-capturing. Comput Fluids 36:147–159MATHCrossRef
82.
Zurück zum Zitat Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ \(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ \(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608MATHMathSciNetCrossRef
83.
Zurück zum Zitat Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZ \(\beta \) shock-capturing. J Appl Mech 76:021208CrossRef Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZ \(\beta \) shock-capturing. J Appl Mech 76:021208CrossRef
84.
Zurück zum Zitat Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Computat Phys 229:3402–3414MATHMathSciNetCrossRef Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Computat Phys 229:3402–3414MATHMathSciNetCrossRef
85.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511MATHMathSciNetCrossRef Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511MATHMathSciNetCrossRef
86.
Zurück zum Zitat Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL (2011) Modeling of congenital hearts alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291 Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL (2011) Modeling of congenital hearts alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291
87.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATH
88.
Zurück zum Zitat Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373MATHCrossRef Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373MATHCrossRef
89.
Zurück zum Zitat Trefethen LN (2012) Gibbs phenomenon. In Approximation theory and approximation practice, chapter 9. SIAM, Philadelphia, Pennsylvania, USA Trefethen LN (2012) Gibbs phenomenon. In Approximation theory and approximation practice, chapter 9. SIAM, Philadelphia, Pennsylvania, USA
90.
Zurück zum Zitat Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 135(2):118–125MathSciNetCrossRef Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 135(2):118–125MathSciNetCrossRef
91.
Zurück zum Zitat Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198:3902–3914MATHCrossRef Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198:3902–3914MATHCrossRef
92.
Zurück zum Zitat Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416MATHCrossRef Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416MATHCrossRef
93.
Zurück zum Zitat Kiendl J (2011) Isogeometric analysis and shape optimal design of shell structures. PhD thesis, Lehrstuhl für Statik, Technische Universität München Kiendl J (2011) Isogeometric analysis and shape optimal design of shell structures. PhD thesis, Lehrstuhl für Statik, Technische Universität München
94.
Zurück zum Zitat Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester
95.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. J Appl Mech 60:371–375MATHMathSciNetCrossRef Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. J Appl Mech 60:371–375MATHMathSciNetCrossRef
96.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319 Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319
97.
Zurück zum Zitat Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753MATHMathSciNetCrossRef Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753MATHMathSciNetCrossRef
98.
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MATHMathSciNetCrossRef Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MATHMathSciNetCrossRef
99.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900MATHMathSciNetCrossRef Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900MATHMathSciNetCrossRef
100.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ChichesterCrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ChichesterCrossRef
101.
102.
103.
Zurück zum Zitat Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinCrossRef Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinCrossRef
104.
Zurück zum Zitat De Lorenzis L, Temizer İ, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Fluids 87:1278–1300MATH De Lorenzis L, Temizer İ, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Fluids 87:1278–1300MATH
105.
Zurück zum Zitat Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414CrossRef Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414CrossRef
106.
Zurück zum Zitat Bellhouse BJ, Bellhouse FH (1968) Mechanism of closure of the aortic valve. Nature 217(5123):86–87CrossRef Bellhouse BJ, Bellhouse FH (1968) Mechanism of closure of the aortic valve. Nature 217(5123):86–87CrossRef
107.
Zurück zum Zitat Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127(6):905–914CrossRef Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127(6):905–914CrossRef
108.
Zurück zum Zitat Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP (2011) Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. J Biomech Eng 133(6):061007CrossRef Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP (2011) Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. J Biomech Eng 133(6):061007CrossRef
109.
Zurück zum Zitat Felner JM (1990) The second heart sound. In Clinical methods: the history, physical, and laboratory, 3rd edn, chapter 23. Butterworths, Boston, USA Felner JM (1990) The second heart sound. In Clinical methods: the history, physical, and laboratory, 3rd edn, chapter 23. Butterworths, Boston, USA
110.
Zurück zum Zitat Sabbah HN, Stein PD (1978) Relation of the second sound to diastolic vibration of the closed aortic valve. Am J Physiol Heart Circ Physiol 234(6):H696–H700 Sabbah HN, Stein PD (1978) Relation of the second sound to diastolic vibration of the closed aortic valve. Am J Physiol Heart Circ Physiol 234(6):H696–H700
111.
Zurück zum Zitat Kendall ME, Rembert JC, Greenfield JC Jr (1973) Pressure-flow studies in man: the nature of the aortic flow pattern in both valvular mitral insufficiency and the prolapsing mitral valve syndrome. Am Heart J 86(3):359–365CrossRef Kendall ME, Rembert JC, Greenfield JC Jr (1973) Pressure-flow studies in man: the nature of the aortic flow pattern in both valvular mitral insufficiency and the prolapsing mitral valve syndrome. Am Heart J 86(3):359–365CrossRef
112.
Zurück zum Zitat Uther JB, Peterson KL, Shabetai R, Braunwald E (1973) Measurement of ascending aortic flow patterns in man. J Appl Physiol 34(4):513–518 Uther JB, Peterson KL, Shabetai R, Braunwald E (1973) Measurement of ascending aortic flow patterns in man. J Appl Physiol 34(4):513–518
113.
Zurück zum Zitat Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275CrossRef Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275CrossRef
114.
Zurück zum Zitat Nollert G, Miksch J, Kreuzer E, Reichart B (2003) Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg 126(4):965–968 Nollert G, Miksch J, Kreuzer E, Reichart B (2003) Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg 126(4):965–968
115.
Zurück zum Zitat Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New YorkCrossRef Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New YorkCrossRef
116.
Zurück zum Zitat Tong P, Fung Y-C (1976) The stress-strain relationship for the skin. J Biomech 9(10):649–657CrossRef Tong P, Fung Y-C (1976) The stress-strain relationship for the skin. J Biomech 9(10):649–657CrossRef
117.
Zurück zum Zitat Fung YC (1993) Biomechanics: mechanical properties of living tissues, second edition edn. Springer, New York Fung YC (1993) Biomechanics: mechanical properties of living tissues, second edition edn. Springer, New York
118.
Zurück zum Zitat Iyengar AKS, Sugimoto H, Smith DB, Sacks MS (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann Biomed Eng 29(11):963–973 Iyengar AKS, Sugimoto H, Smith DB, Sacks MS (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann Biomed Eng 29(11):963–973
119.
Zurück zum Zitat Sugimoto H, Sacks MS (2013) Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape. Cardiovasc Eng Tech 4(1):2–15CrossRef Sugimoto H, Sacks MS (2013) Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape. Cardiovasc Eng Tech 4(1):2–15CrossRef
Metadaten
Titel
Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation
verfasst von
Ming-Chen Hsu
David Kamensky
Yuri Bazilevs
Michael S. Sacks
Thomas J. R. Hughes
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1059-4

Weitere Artikel der Ausgabe 4/2014

Computational Mechanics 4/2014 Zur Ausgabe

Neuer Inhalt