Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.04.2018 | Focus | Ausgabe 11/2018

Soft Computing 11/2018

FSELM: fusion semi-supervised extreme learning machine for indoor localization with Wi-Fi and Bluetooth fingerprints

Zeitschrift:
Soft Computing > Ausgabe 11/2018
Autoren:
Xinlong Jiang, Yiqiang Chen, Junfa Liu, Yang Gu, Lisha Hu
Wichtige Hinweise
Communicated by X. Wang, M. Pelillo, A. K. Sangaiah.

Abstract

Recently, the problem of indoor localization based on WLAN signals is attracting increasing attention due to the development of mobile devices and the widespread construction of networks. However, no definitive solution for achieving a low-cost and accurate positioning system has been found. In most traditional approaches, solving the indoor localization problem requires the availability of a large number of labeled training samples, the collection of which requires considerable manual effort. Previous research has not provided a means of simultaneously reducing human calibration effort and improving location accuracy. This paper introduces fusion semi-supervised extreme learning machine (FSELM), a novel semi-supervised learning algorithm based on the fusion of information from Wi-Fi and Bluetooth Low Energy (BLE) signals. Unlike previous semi-supervised methods, which consider multiple signals individually, FSELM fuses multiple signals into a unified model. When applied to sparsely calibrated localization problems, our proposed method is advantageous in three respects. First, it can dramatically reduce the human calibration effort required when using a semi-supervised learning framework. Second, it utilizes fused Wi-Fi and BLE fingerprints to markedly improve the location accuracy. Third, it inherits the beneficial properties of ELMs with regard to training and testing speeds because the input weights and biases of hidden nodes can be generated randomly. As demonstrated by experimental results obtained on practical indoor localization datasets, FSELM possesses a better semi-supervised manifold learning ability and achieves higher location accuracy than several previous batch supervised learning approaches (ELM, BP and SVM) and semi-supervised learning approaches (SELM, S-RVFL and FS-RVFL). Moreover, FSELM needs less training and testing time, making it easier to apply in practice. We conclude through experiments that FSELM yields good results when applied to a multi-signal-based semi-supervised learning problem. The contributions of this paper can be summarized as follows: First, the findings indicate that effective multi-data fusion can be achieved not only through data-layer fusion, feature-layer fusion and decision-layer fusion but also through the fusion of constraints within a model. Second, for semi-supervised learning problems, it is necessary to combine the advantages of different types of data by optimizing the model’s parameters.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2018

Soft Computing 11/2018 Zur Ausgabe

Premium Partner

    Bildnachweise