Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 10/2020

11.06.2020 | Research Article-Civil Engineering

Gaussian Process Regression Technique to Estimate the Pile Bearing Capacity

verfasst von: Ehsan Momeni, Mohammad Bagher Dowlatshahi, Fereydoon Omidinasab, Harnedi Maizir, Danial Jahed Armaghani

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A commonly-encountered problem in foundation design is the reliable prediction of the pile bearing capacity (PBC). This study is planned to propose a feasible soft computing technique in this field i.e.; the Gaussian process regression (GPR) for the PBC estimation. The established database includes 296 number of dynamic pile load test in the field where the most influential factors on the PBC were selected as input variables. Several GPR models were designed and built. These models were assessed using three performance indices namely value account for (VAF), coefficient of determination (R2) and system error. To have a comparison, a genetic algorithm-based artificial neural network (GA-based ANN) model was also employed. It was found that the GPR-based model with VAF value of 86.41%, R2 of 0.84 and system error of 0.2006 is capable enough to predict the PBC and outperforms the GA-based ANN model. The results showed that the GPR can be utilized as a practical tool for the PBC estimation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H.: Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci. Res. J. 19, 85–93 (2015)CrossRef Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H.: Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci. Res. J. 19, 85–93 (2015)CrossRef
2.
Zurück zum Zitat Mayerhof, G.G.: Bearing capacity and settlemtn of pile foundations. J. Geotech. Geoenviron. Eng. 102, 196–228 (1976) Mayerhof, G.G.: Bearing capacity and settlemtn of pile foundations. J. Geotech. Geoenviron. Eng. 102, 196–228 (1976)
4.
Zurück zum Zitat Milad, F.; Kamal, T.; Nader, H.; Erman, O.E.: New method for predicting the ultimate bearing capacity of driven piles by using Flap number. KSCE J. Civ. Eng. 19, 611–620 (2015)CrossRef Milad, F.; Kamal, T.; Nader, H.; Erman, O.E.: New method for predicting the ultimate bearing capacity of driven piles by using Flap number. KSCE J. Civ. Eng. 19, 611–620 (2015)CrossRef
5.
Zurück zum Zitat Nazir, R.; Momeni, E.; Gofar, N.; Maizir, H.: Numerical Modelling of skin resistance distribution with depth in driven pile. Electron. J. Geotech. Eng. 18, 2477–2488 (2013) Nazir, R.; Momeni, E.; Gofar, N.; Maizir, H.: Numerical Modelling of skin resistance distribution with depth in driven pile. Electron. J. Geotech. Eng. 18, 2477–2488 (2013)
6.
Zurück zum Zitat Rausche, F.; Goble, G.G.; Likins Jr.; G.E.: Dynamic determination of pile capacity. J. Geotech. Eng. 111, 367–383 (1985)CrossRef Rausche, F.; Goble, G.G.; Likins Jr.; G.E.: Dynamic determination of pile capacity. J. Geotech. Eng. 111, 367–383 (1985)CrossRef
7.
Zurück zum Zitat Dowlatshahi, M.B.; Derhami, V.; Nezamabadi-pour, H.: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection. Information. 8, 152 (2017)CrossRef Dowlatshahi, M.B.; Derhami, V.; Nezamabadi-pour, H.: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection. Information. 8, 152 (2017)CrossRef
8.
Zurück zum Zitat Dowlatshahi, M.B.; Derhami, V.; Nezamabadi-pour, H.: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification. In: Informatics, Multidisciplinary Digital Publishing Institute, p. 13 (2018) Dowlatshahi, M.B.; Derhami, V.; Nezamabadi-pour, H.: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification. In: Informatics, Multidisciplinary Digital Publishing Institute, p. 13 (2018)
9.
Zurück zum Zitat Paniri, M.; Dowlatshahi, M.B.; Nezamabadi-pour, H.: MLACO: a multi-label feature selection algorithm based on ant colony optimization. Knowl. Based Syst. 192, 105285 (2020)CrossRef Paniri, M.; Dowlatshahi, M.B.; Nezamabadi-pour, H.: MLACO: a multi-label feature selection algorithm based on ant colony optimization. Knowl. Based Syst. 192, 105285 (2020)CrossRef
10.
Zurück zum Zitat Hashemi, A.; Dowlatshahi, M.B.; Nezamabadi-pour, H.: MGFS: a multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst. Appl. 142, 113024 (2020)CrossRef Hashemi, A.; Dowlatshahi, M.B.; Nezamabadi-pour, H.: MGFS: a multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst. Appl. 142, 113024 (2020)CrossRef
11.
Zurück zum Zitat Omidinasab, F.; Goodarzimehr, V.: A Hybrid Particle Swarm Optimization and Genetic Algorithm for truss structures with discrete variables. J. Appl. Comput. Mech. 6, 593–604 (2020) Omidinasab, F.; Goodarzimehr, V.: A Hybrid Particle Swarm Optimization and Genetic Algorithm for truss structures with discrete variables. J. Appl. Comput. Mech. 6, 593–604 (2020)
12.
Zurück zum Zitat Armaghani, D.J.; Asteris, P.G.; Askarian, B.; Hasanipanah, M.; Tarinejad, R.; Van Huynh, V.: Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability. 12, 2229 (2020)CrossRef Armaghani, D.J.; Asteris, P.G.; Askarian, B.; Hasanipanah, M.; Tarinejad, R.; Van Huynh, V.: Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability. 12, 2229 (2020)CrossRef
13.
Zurück zum Zitat Armaghani, D.J.; Asteris, P.G.; Fatemi, S.A.; Hasanipanah, M.; Tarinejad, R.; Rashid, A.S.A.; Van Huynh, V.: On the use of neuro-swarm system to forecast the pile settlement. Appl. Sci. 10, 1904 (2020)CrossRef Armaghani, D.J.; Asteris, P.G.; Fatemi, S.A.; Hasanipanah, M.; Tarinejad, R.; Rashid, A.S.A.; Van Huynh, V.: On the use of neuro-swarm system to forecast the pile settlement. Appl. Sci. 10, 1904 (2020)CrossRef
16.
Zurück zum Zitat Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M.: Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks. Appl. Sci. 9, 2788 (2019)CrossRef Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M.: Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks. Appl. Sci. 9, 2788 (2019)CrossRef
17.
Zurück zum Zitat Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M.: Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 26, 1–8 (2018) Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M.: Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 26, 1–8 (2018)
18.
Zurück zum Zitat Huang, L.; Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M.: Invasive weed optimization technique-based ANN to the prediction of rock tensile strength. Appl. Sci. 9, 5372 (2019)CrossRef Huang, L.; Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M.: Invasive weed optimization technique-based ANN to the prediction of rock tensile strength. Appl. Sci. 9, 5372 (2019)CrossRef
19.
Zurück zum Zitat Armaghani, D.J.; Hatzigeorgiou, G.D.; Karamani, C.; Skentou, A.; Zoumpoulaki, I.; Asteris, P.G.: Soft computing-based techniques for concrete beams shear strength. Proc. Struct. Integr. 17, 924–933 (2019)CrossRef Armaghani, D.J.; Hatzigeorgiou, G.D.; Karamani, C.; Skentou, A.; Zoumpoulaki, I.; Asteris, P.G.: Soft computing-based techniques for concrete beams shear strength. Proc. Struct. Integr. 17, 924–933 (2019)CrossRef
20.
Zurück zum Zitat Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D.: Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech. Eng. 20, 191–205 (2020) Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D.: Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech. Eng. 20, 191–205 (2020)
24.
Zurück zum Zitat Naghipour, M.; Niak, K.M.; Shariati, M.; Toghroli, A.: Effect of progressive shear punch of a foundation on a reinforced concrete building behavior. Steel Compos. Struct. 35, 279–294 (2020) Naghipour, M.; Niak, K.M.; Shariati, M.; Toghroli, A.: Effect of progressive shear punch of a foundation on a reinforced concrete building behavior. Steel Compos. Struct. 35, 279–294 (2020)
25.
Zurück zum Zitat Bunawan, A.R.; Momeni, E.; Armaghani, D.J.; Rashid, A.S.A.: Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement 124, 529–538 (2018)CrossRef Bunawan, A.R.; Momeni, E.; Armaghani, D.J.; Rashid, A.S.A.: Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement 124, 529–538 (2018)CrossRef
26.
Zurück zum Zitat Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Monjezi, M.; Narayanasamy, M.S.: Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 9, 48 (2016)CrossRef Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Monjezi, M.; Narayanasamy, M.S.: Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 9, 48 (2016)CrossRef
27.
Zurück zum Zitat Armaghani, D.; Momeni, E.; Abad, S.: Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 74, 2845–2860 (2015)CrossRef Armaghani, D.; Momeni, E.; Abad, S.: Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 74, 2845–2860 (2015)CrossRef
28.
Zurück zum Zitat Zhou, J.; Li, X.; Mitri, H.S.: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat. Hazards. 79, 291–316 (2015)CrossRef Zhou, J.; Li, X.; Mitri, H.S.: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat. Hazards. 79, 291–316 (2015)CrossRef
29.
Zurück zum Zitat Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S.: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 118, 505–518 (2019)CrossRef Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S.: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 118, 505–518 (2019)CrossRef
30.
Zurück zum Zitat Zhou, J.; Shi, X.; Li, X.: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control. 22, 3986–3997 (2016)CrossRef Zhou, J.; Shi, X.; Li, X.: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control. 22, 3986–3997 (2016)CrossRef
31.
Zurück zum Zitat Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A.: Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 24, 329–345 (2019) Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A.: Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 24, 329–345 (2019)
32.
Zurück zum Zitat Ghanizadeh, A.R.; Abbaslou, H.; Amlashi, A.T.; Alidoust, P.: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front. Struct. Civ. Eng. 13, 215–239 (2019)CrossRef Ghanizadeh, A.R.; Abbaslou, H.; Amlashi, A.T.; Alidoust, P.: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front. Struct. Civ. Eng. 13, 215–239 (2019)CrossRef
33.
Zurück zum Zitat Reddy, T.C.S.: Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Front. Struct. Civ. Eng. 12, 490–503 (2018)CrossRef Reddy, T.C.S.: Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Front. Struct. Civ. Eng. 12, 490–503 (2018)CrossRef
34.
Zurück zum Zitat Chen, R.; Zhang, P.; Wu, H.; Wang, Z.; Zhong, Z.: Prediction of shield tunneling-induced ground settlement using machine learning techniques. Front. Struct. Civ. Eng. 13, 1363–1378 (2019)CrossRef Chen, R.; Zhang, P.; Wu, H.; Wang, Z.; Zhong, Z.: Prediction of shield tunneling-induced ground settlement using machine learning techniques. Front. Struct. Civ. Eng. 13, 1363–1378 (2019)CrossRef
35.
Zurück zum Zitat Safa, M.; Maleka, A.; Arjomand, M.-A.; Khorami, M.; Shariati, M.: Strain rate effects on soil-geosynthetic interaction in fine-grained soil. Geomech. Eng. 19, 533 (2019) Safa, M.; Maleka, A.; Arjomand, M.-A.; Khorami, M.; Shariati, M.: Strain rate effects on soil-geosynthetic interaction in fine-grained soil. Geomech. Eng. 19, 533 (2019)
36.
Zurück zum Zitat Singh, T.; Pal, M.; Arora, V.K.: Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree. Front. Struct. Civ. Eng. 13, 674–685 (2019)CrossRef Singh, T.; Pal, M.; Arora, V.K.: Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree. Front. Struct. Civ. Eng. 13, 674–685 (2019)CrossRef
37.
Zurück zum Zitat Ismail, A.: ANN-based empirical modelling of pile behaviour under static compressive loading. Front. Struct. Civ. Eng. 12, 594–608 (2018)CrossRef Ismail, A.: ANN-based empirical modelling of pile behaviour under static compressive loading. Front. Struct. Civ. Eng. 12, 594–608 (2018)CrossRef
39.
Zurück zum Zitat Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K.: Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput. Concr. 24, 469–488 (2019) Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K.: Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput. Concr. 24, 469–488 (2019)
40.
Zurück zum Zitat Momeni, E.; Poormoosavian, M.; Mahdiyar, A.; Fakher, A.: Evaluating random set technique for reliability analysis of deep urban excavation using Monte Carlo simulation. Comput. Geotech. 100, 203–215 (2018)CrossRef Momeni, E.; Poormoosavian, M.; Mahdiyar, A.; Fakher, A.: Evaluating random set technique for reliability analysis of deep urban excavation using Monte Carlo simulation. Comput. Geotech. 100, 203–215 (2018)CrossRef
42.
Zurück zum Zitat Shariati, M.; Azar, S.M.; Arjomand, M.-A.; Tehrani, H.S.; Daei, M.; Safa, M.: Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils. Geomech. Eng. 19, 473 (2019) Shariati, M.; Azar, S.M.; Arjomand, M.-A.; Tehrani, H.S.; Daei, M.; Safa, M.: Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils. Geomech. Eng. 19, 473 (2019)
43.
Zurück zum Zitat Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M.: Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Phys. A Stat. Mech. Appl. 550, 124046 (2020)CrossRef Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M.: Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Phys. A Stat. Mech. Appl. 550, 124046 (2020)CrossRef
44.
Zurück zum Zitat Shariati, M.; Azar, S.M.; Arjomand, M.-A.; Tehrani, H.S.; Daei, M.; Safa, M.: Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load. Geomech. Eng. 20, 87–101 (2020) Shariati, M.; Azar, S.M.; Arjomand, M.-A.; Tehrani, H.S.; Daei, M.; Safa, M.: Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load. Geomech. Eng. 20, 87–101 (2020)
45.
Zurück zum Zitat Suhatril, M.; Osman, N.; Sari, P.A.; Shariati, M.; Marto, A.: Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia. Geotech. Geol. Eng. 37, 2007–2014 (2019)CrossRef Suhatril, M.; Osman, N.; Sari, P.A.; Shariati, M.; Marto, A.: Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia. Geotech. Geol. Eng. 37, 2007–2014 (2019)CrossRef
46.
Zurück zum Zitat Zhou, J.; Li, X.; Mitri, H.S.: Evaluation method of rockburst: state-of-the-art literature review. Tunn. Undergr. Sp. Technol. 81, 632–659 (2018)CrossRef Zhou, J.; Li, X.; Mitri, H.S.: Evaluation method of rockburst: state-of-the-art literature review. Tunn. Undergr. Sp. Technol. 81, 632–659 (2018)CrossRef
48.
Zurück zum Zitat Fatehnia, M.; Amirinia, G.: A review of Genetic Programming and Artificial Neural Network applications in pile foundations. Int. J. Geo-Eng. 9, 2 (2018)CrossRef Fatehnia, M.; Amirinia, G.: A review of Genetic Programming and Artificial Neural Network applications in pile foundations. Int. J. Geo-Eng. 9, 2 (2018)CrossRef
52.
Zurück zum Zitat Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H.: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57, 122–131 (2014)CrossRef Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H.: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57, 122–131 (2014)CrossRef
53.
Zurück zum Zitat Shaik, S.; Krishna, K.S.R.; Abbas, M.; Ahmed, M.; Mavaluru, D.: Applying several soft computing techniques for prediction of bearing capacity of driven piles. Eng. Comput. 35, 1463–1474 (2019)CrossRef Shaik, S.; Krishna, K.S.R.; Abbas, M.; Ahmed, M.; Mavaluru, D.: Applying several soft computing techniques for prediction of bearing capacity of driven piles. Eng. Comput. 35, 1463–1474 (2019)CrossRef
54.
Zurück zum Zitat Mohanty, R.; Suman, S.; Das, S.K.: Prediction of vertical pile capacity of driven pile in cohesionless soil using artificial intelligence techniques. Int. J. Geotech. Eng. 12, 1–8 (2016) Mohanty, R.; Suman, S.; Das, S.K.: Prediction of vertical pile capacity of driven pile in cohesionless soil using artificial intelligence techniques. Int. J. Geotech. Eng. 12, 1–8 (2016)
55.
Zurück zum Zitat Samui, P.: Prediction of pile bearing capacity using support vector machine. Int. J. Geotech. Eng. 5, 95–102 (2011)CrossRef Samui, P.: Prediction of pile bearing capacity using support vector machine. Int. J. Geotech. Eng. 5, 95–102 (2011)CrossRef
56.
Zurück zum Zitat Muduli, P.K.; Das, S.K.; Das, M.R.: Prediction of lateral load capacity of piles using extreme learning machine. Int. J. Geotech. Eng. 7, 388–394 (2013)CrossRef Muduli, P.K.; Das, S.K.; Das, M.R.: Prediction of lateral load capacity of piles using extreme learning machine. Int. J. Geotech. Eng. 7, 388–394 (2013)CrossRef
57.
Zurück zum Zitat Suman, S.; Das, S.K.; Mohanty, R.: Prediction of friction capacity of driven piles in clay using artificial intelligence techniques. Int. J. Geotech. Eng. 10, 469–475 (2016)CrossRef Suman, S.; Das, S.K.; Mohanty, R.: Prediction of friction capacity of driven piles in clay using artificial intelligence techniques. Int. J. Geotech. Eng. 10, 469–475 (2016)CrossRef
59.
Zurück zum Zitat Jebur, A.A.; Atherton, W.; Al Khaddar, R.M.; Loffill, E.: Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load. Eur. J. Environ. Civ. Eng. 1–23 (2018) Jebur, A.A.; Atherton, W.; Al Khaddar, R.M.; Loffill, E.: Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load. Eur. J. Environ. Civ. Eng. 1–23 (2018)
60.
Zurück zum Zitat Nazir, R.; Momeni, E.; Marsono, K.; Prediction of bearing capacity for thin-wall spread foundations using ICA-ANN predictive model. In: Proc. Int. Conf. Civil, Struct. Transp. Eng. Ottawa, Ontario–May, pp. 4–5 (2015) Nazir, R.; Momeni, E.; Marsono, K.; Prediction of bearing capacity for thin-wall spread foundations using ICA-ANN predictive model. In: Proc. Int. Conf. Civil, Struct. Transp. Eng. Ottawa, Ontario–May, pp. 4–5 (2015)
61.
Zurück zum Zitat Acharyya, R.; Dey, A.: Assessment of bearing capacity for strip footing located near sloping surface considering ANN model. Neural Comput. Appl. 31, 8087–8100 (2019)CrossRef Acharyya, R.; Dey, A.: Assessment of bearing capacity for strip footing located near sloping surface considering ANN model. Neural Comput. Appl. 31, 8087–8100 (2019)CrossRef
63.
Zurück zum Zitat Rezaei, H.; Nazir, R.; Momeni, E.: Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. J. Zhejiang Univ. A. 17, 273–285 (2016)CrossRef Rezaei, H.; Nazir, R.; Momeni, E.: Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. J. Zhejiang Univ. A. 17, 273–285 (2016)CrossRef
64.
Zurück zum Zitat Momeni, E.; Armaghani, D.J.; Fatemi, S.A.; Nazir, R.: Prediction of bearing capacity of thin-walled foundation: a simulation approach. Eng. Comput. 34, 319–327 (2018)CrossRef Momeni, E.; Armaghani, D.J.; Fatemi, S.A.; Nazir, R.: Prediction of bearing capacity of thin-walled foundation: a simulation approach. Eng. Comput. 34, 319–327 (2018)CrossRef
65.
Zurück zum Zitat Armaghani, D.J.; Raja, R.S.N.S.B.; Faizi, K.; Rashid, A.S.A.: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 28, 391–405 (2017)CrossRef Armaghani, D.J.; Raja, R.S.N.S.B.; Faizi, K.; Rashid, A.S.A.: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 28, 391–405 (2017)CrossRef
66.
Zurück zum Zitat Goh, A.T.C.: Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9, 143–151 (1995)CrossRef Goh, A.T.C.: Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9, 143–151 (1995)CrossRef
67.
Zurück zum Zitat Goh, A.T.C.: Pile driving records reanalyzed using neural networks. J. Geotech. Eng. 122, 492–495 (1996)CrossRef Goh, A.T.C.: Pile driving records reanalyzed using neural networks. J. Geotech. Eng. 122, 492–495 (1996)CrossRef
68.
Zurück zum Zitat Marto, A.; Hajihassani, M.; Momeni, E.: Bearing capacity of shallow foundation’s prediction through hybrid artificial neural networks. In: Appl. Mech. Mater.; Trans Tech Publ, pp. 681–686 (2014) Marto, A.; Hajihassani, M.; Momeni, E.: Bearing capacity of shallow foundation’s prediction through hybrid artificial neural networks. In: Appl. Mech. Mater.; Trans Tech Publ, pp. 681–686 (2014)
70.
Zurück zum Zitat Soleimanbeigi, A.; Hataf, N.: Prediction of settlement of shallow foundations on reinforced soils using neural networks. Geosynth. Int. 13, 161–170 (2006)CrossRef Soleimanbeigi, A.; Hataf, N.: Prediction of settlement of shallow foundations on reinforced soils using neural networks. Geosynth. Int. 13, 161–170 (2006)CrossRef
71.
Zurück zum Zitat Padmini, D.; Ilamparuthi, K.; Sudheer, K.P.: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 35, 33–46 (2008)CrossRef Padmini, D.; Ilamparuthi, K.; Sudheer, K.P.: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 35, 33–46 (2008)CrossRef
72.
Zurück zum Zitat Wardani, S.P.R.; Surjandari, N.S.; Jajaputra, A.A.: Analysis of ultimate bearing capacity of single pile using the artificial neural networks approach: a case study. In: Proc.; 18th Int. Conf. Soil Mech. Geotech. Engrg.; Paris, Fr.; pp. 837–840 (2013) Wardani, S.P.R.; Surjandari, N.S.; Jajaputra, A.A.: Analysis of ultimate bearing capacity of single pile using the artificial neural networks approach: a case study. In: Proc.; 18th Int. Conf. Soil Mech. Geotech. Engrg.; Paris, Fr.; pp. 837–840 (2013)
73.
Zurück zum Zitat Ornek, M.; Laman, M.; Demir, A.; Yildiz, A.: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found. 52, 69–80 (2012)CrossRef Ornek, M.; Laman, M.; Demir, A.; Yildiz, A.: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found. 52, 69–80 (2012)CrossRef
74.
Zurück zum Zitat Kiefa, M.A.A.: General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. Eng. 124, 1177–1185 (1998)CrossRef Kiefa, M.A.A.: General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. Eng. 124, 1177–1185 (1998)CrossRef
75.
Zurück zum Zitat Nawari, N.O.; Liang, R.; Nusairat, J.: Artificial intelligence techniques for the design and analysis of deep foundations. Electron. J. Geotech. Eng. 4, 1–21 (1999) Nawari, N.O.; Liang, R.; Nusairat, J.: Artificial intelligence techniques for the design and analysis of deep foundations. Electron. J. Geotech. Eng. 4, 1–21 (1999)
76.
Zurück zum Zitat Pal, M.; Deswal, S.: Modeling pile capacity using support vector machines and generalized regression neural network. J. Geotech. Geoenviron. Eng. 134, 1021–1024 (2008)CrossRef Pal, M.; Deswal, S.: Modeling pile capacity using support vector machines and generalized regression neural network. J. Geotech. Geoenviron. Eng. 134, 1021–1024 (2008)CrossRef
77.
Zurück zum Zitat Shahin, M.A.: Intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 47, 230–243 (2010)CrossRef Shahin, M.A.: Intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 47, 230–243 (2010)CrossRef
78.
Zurück zum Zitat Shahin, M.A.; Jaksa, M.B.: Intelligent computing for predicting axial capacity of drilled shafts. In: Contemp. Top. Situ Testing, Anal. Reliab. Found.; pp. 26–33 (2009) Shahin, M.A.; Jaksa, M.B.: Intelligent computing for predicting axial capacity of drilled shafts. In: Contemp. Top. Situ Testing, Anal. Reliab. Found.; pp. 26–33 (2009)
79.
Zurück zum Zitat Mahesh, P.: Modeling pile capacity using generalized regression neural network. In: Proc.; Indian Geotech. Conf. Kochi, India, No. N-027, pp. 811–814 (2011) Mahesh, P.: Modeling pile capacity using generalized regression neural network. In: Proc.; Indian Geotech. Conf. Kochi, India, No. N-027, pp. 811–814 (2011)
80.
Zurück zum Zitat Jianbin, Z.; Jiewen, T.; Yongqiang, S.: An ANN model for predicting level ultimate bearing capacity of PHC pipe pile. In: Earth Sp. 2010 Eng. Sci. Constr. Oper. Challenging Environ.; pp. 3168–3176 (2010) Jianbin, Z.; Jiewen, T.; Yongqiang, S.: An ANN model for predicting level ultimate bearing capacity of PHC pipe pile. In: Earth Sp. 2010 Eng. Sci. Constr. Oper. Challenging Environ.; pp. 3168–3176 (2010)
81.
Zurück zum Zitat Benali, A, Nechnech, A.: Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks. In: Int. Semin. Innov. Valorization Civ. Eng. Constr. Mater. Rabat, Morocco, pp. 23–25 (2011) Benali, A, Nechnech, A.: Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks. In: Int. Semin. Innov. Valorization Civ. Eng. Constr. Mater. Rabat, Morocco, pp. 23–25 (2011)
82.
Zurück zum Zitat Moayedi, H.; Hayati, S.: Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput. Appl. 31, 7429–7445 (2019)CrossRef Moayedi, H.; Hayati, S.: Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput. Appl. 31, 7429–7445 (2019)CrossRef
83.
Zurück zum Zitat ASTM D 4945-13: Standard test method for high strain testing of piles, American Society for Testing and Materials (2013) ASTM D 4945-13: Standard test method for high strain testing of piles, American Society for Testing and Materials (2013)
84.
Zurück zum Zitat Goble, G.G.; Rausche, F.; Moses, F.: Dynamics Studies on the Bearing Capacity of piles: Final Report to the Ohio Department of Highways, Cleveland, Ohio Case West. Reserv. Univ. (1970) Goble, G.G.; Rausche, F.; Moses, F.: Dynamics Studies on the Bearing Capacity of piles: Final Report to the Ohio Department of Highways, Cleveland, Ohio Case West. Reserv. Univ. (1970)
85.
Zurück zum Zitat Fellenius, B.H.: Wave equation analysis and dynamic monitoring. Deep Found J. 1, 49–55 (1984) Fellenius, B.H.: Wave equation analysis and dynamic monitoring. Deep Found J. 1, 49–55 (1984)
86.
Zurück zum Zitat Williams, C.K.I.; Rasmussen, C.E.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)MATH Williams, C.K.I.; Rasmussen, C.E.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)MATH
87.
Zurück zum Zitat Li, J.J.; Jutzeler, A.; Faltings, B.; Winter, S.; Rizos, C.: Estimating urban ultrafine particle distributions with gaussian process models. Res. Locate 14, 145–153 (2014)CrossRef Li, J.J.; Jutzeler, A.; Faltings, B.; Winter, S.; Rizos, C.: Estimating urban ultrafine particle distributions with gaussian process models. Res. Locate 14, 145–153 (2014)CrossRef
88.
Zurück zum Zitat Kang, F.; Han, S.; Salgado, R.; Li, J.: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling. Comput. Geotech. 63, 13–25 (2015)CrossRef Kang, F.; Han, S.; Salgado, R.; Li, J.: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling. Comput. Geotech. 63, 13–25 (2015)CrossRef
89.
Zurück zum Zitat Snelson, E.L.: Flexible and efficient Gaussian process models for machine learning. PhD thesis, Gatsby Computational Neuroscience Unit, University College London (2007) Snelson, E.L.: Flexible and efficient Gaussian process models for machine learning. PhD thesis, Gatsby Computational Neuroscience Unit, University College London (2007)
90.
Zurück zum Zitat Dowlatshahi, M.B.; Nezamabadi-Pour, H.: GGSA: a grouping gravitational search algorithm for data clustering. Eng. Appl. Artif. Intell. 36, 114–121 (2014)CrossRef Dowlatshahi, M.B.; Nezamabadi-Pour, H.: GGSA: a grouping gravitational search algorithm for data clustering. Eng. Appl. Artif. Intell. 36, 114–121 (2014)CrossRef
91.
Zurück zum Zitat Swingler, K.: Applying neural networks: a practical guide. Academic Press, New York (1996) Swingler, K.: Applying neural networks: a practical guide. Academic Press, New York (1996)
92.
Zurück zum Zitat Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Narayanasamy, M.S.: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301–1319 (2015)CrossRef Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Narayanasamy, M.S.: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301–1319 (2015)CrossRef
93.
Zurück zum Zitat Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Yazdavar, A.H.; Ebrahimi, M.: Rock strength estimation: a PSO-based BP approach. Neural Comput. Appl. 30, 1635–1646 (2018)CrossRef Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Yazdavar, A.H.; Ebrahimi, M.: Rock strength estimation: a PSO-based BP approach. Neural Comput. Appl. 30, 1635–1646 (2018)CrossRef
94.
Zurück zum Zitat Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M.: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60, 50–63 (2015)CrossRef Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M.: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60, 50–63 (2015)CrossRef
95.
Zurück zum Zitat Liu, J.; Yan, K.; Zhao, X.; Hu, Y.: Prediction of autogenous shrinkage of concretes by support vector machine. Int. J. Pavement Res. Technol. 9, 169–177 (2016)CrossRef Liu, J.; Yan, K.; Zhao, X.; Hu, Y.: Prediction of autogenous shrinkage of concretes by support vector machine. Int. J. Pavement Res. Technol. 9, 169–177 (2016)CrossRef
96.
Zurück zum Zitat Moore, C.J.; Chua, A.J.K.; Berry, C.P.L.; Gair, J.R.: Fast methods for training Gaussian processes on large datasets. R. Soc. Open Sci. 3, 160125 (2016)MathSciNetCrossRef Moore, C.J.; Chua, A.J.K.; Berry, C.P.L.; Gair, J.R.: Fast methods for training Gaussian processes on large datasets. R. Soc. Open Sci. 3, 160125 (2016)MathSciNetCrossRef
97.
Zurück zum Zitat R. MATLAB, version 9.4. 0.813654 (R2018a), MathWorks R Natick, MA, USA (2018) R. MATLAB, version 9.4. 0.813654 (R2018a), MathWorks R Natick, MA, USA (2018)
Metadaten
Titel
Gaussian Process Regression Technique to Estimate the Pile Bearing Capacity
verfasst von
Ehsan Momeni
Mohammad Bagher Dowlatshahi
Fereydoon Omidinasab
Harnedi Maizir
Danial Jahed Armaghani
Publikationsdatum
11.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 10/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04683-4

Weitere Artikel der Ausgabe 10/2020

Arabian Journal for Science and Engineering 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.