Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 12/2019

10.11.2019 | Original Article

Hemodynamic effects of support modes of LVADs on the aortic valve

verfasst von: Bin Gao, Qi Zhang, Yu Chang

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the alternative treatment for heart failure, left ventricular assist devices (LVADs) have been widely applied to clinical practice. However, the effects of the support modes of LVADs on the biomechanical states of the aortic valve are still poorly understood. Hence, the present study investigates such effects and proposes a novel fluid–structure interaction (FSI) approach that combines the lattice Boltzmann method (LBM) and finite element (FE) method. Two support modes of LVADs, namely constant speed mode and constant flow mode, which have been widely applied to clinical practice, are also designed. Results demonstrate that the support modes of LVADs could significantly affect the biomechanical states of the aortic valve and the blood flow pattern of the ascending aorta. Compared with those in the constant flow mode, the leaflets in the constant speed mode could achieve better dynamic performance and lower stress during the systolic phase. The max radial displacement of the leaflets in the constant speed mode is at 8 mm, whereas that in the constant flow mode is at 0.8 mm. Furthermore, the outflow of LVADs directly impacts the aortic surfaces of the leaflets during the diastolic phase by increasing the level of wall shear stress of the leaflets. The leaflets in the constant speed mode receive less impact than those in the constant flow mode. The condition with such minimal impact is conducive to maintaining the normal structure of leaflets and benefits the reduction of the risk of valvular diseases. In sum, the support modes of LVADs exert a crucial effect on the biomechanical environment of the aortic valve. The constant speed mode is better than the constant flow mode in terms of providing a good hemodynamic environment for the aortic valve.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Loebe M, Soltro E, Thohan V et al (2003) New surgical therapies for heart failure. Curr Opin Cardiol 18(3):194–198PubMedCrossRef Loebe M, Soltro E, Thohan V et al (2003) New surgical therapies for heart failure. Curr Opin Cardiol 18(3):194–198PubMedCrossRef
2.
Zurück zum Zitat Han J, Trumble DR (2019) Cardiac assist devices: early concepts, current technologies, and future innovations. Bioengineering (Basel) 6(1):15CrossRef Han J, Trumble DR (2019) Cardiac assist devices: early concepts, current technologies, and future innovations. Bioengineering (Basel) 6(1):15CrossRef
3.
Zurück zum Zitat Xuan YJ, Chang Y, Gu K, Gao B (2012) Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. ASAIO J 58(5):462–469PubMedCrossRef Xuan YJ, Chang Y, Gu K, Gao B (2012) Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. ASAIO J 58(5):462–469PubMedCrossRef
4.
Zurück zum Zitat Caruso MV, Gramigna V, Rossi M et al (2015) A computational fluid dynamics comparison between different outflow graft anastomosis locations of left ventricular assist device (LVAD) in a patient-specific aortic model. Int J Numer Method Biomed Eng 31(2):e02700CrossRef Caruso MV, Gramigna V, Rossi M et al (2015) A computational fluid dynamics comparison between different outflow graft anastomosis locations of left ventricular assist device (LVAD) in a patient-specific aortic model. Int J Numer Method Biomed Eng 31(2):e02700CrossRef
5.
Zurück zum Zitat Aliseda A, Chivukula VK, Mcgah P, Prisco AR, Beckman JA, Garcia GJ, Mokadam NA, Mahr C (2017) LVAD outflow graft angle and thrombosis risk. ASAIO J 63(1):14–23PubMedPubMedCentralCrossRef Aliseda A, Chivukula VK, Mcgah P, Prisco AR, Beckman JA, Garcia GJ, Mokadam NA, Mahr C (2017) LVAD outflow graft angle and thrombosis risk. ASAIO J 63(1):14–23PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Zhang Q, Gao B, Chang Y (2017) Computational analysis of intra-ventricular flow pattern under partial and full support of BJUT-II VAD. Med Sci Monit 23:1043–1054PubMedPubMedCentralCrossRef Zhang Q, Gao B, Chang Y (2017) Computational analysis of intra-ventricular flow pattern under partial and full support of BJUT-II VAD. Med Sci Monit 23:1043–1054PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Liao S, Neidlin M, Li Z, Simpson B, Gregory SD (2018) Ventricular flow dynamics with varying LVAD inflow cannula lengths: In-silico evaluation in a multiscale model. J Biomech 72:106–115PubMedCrossRef Liao S, Neidlin M, Li Z, Simpson B, Gregory SD (2018) Ventricular flow dynamics with varying LVAD inflow cannula lengths: In-silico evaluation in a multiscale model. J Biomech 72:106–115PubMedCrossRef
8.
Zurück zum Zitat Iizuka K, Nishinaka T, Ichihara Y, Miyamoto T, Yamazaki K (2018) Outflow graft anastomosis site design could be correlated to aortic valve regurgitation under left ventricular assist device support. J Artif Organs 21(2):150–155PubMedCrossRef Iizuka K, Nishinaka T, Ichihara Y, Miyamoto T, Yamazaki K (2018) Outflow graft anastomosis site design could be correlated to aortic valve regurgitation under left ventricular assist device support. J Artif Organs 21(2):150–155PubMedCrossRef
9.
Zurück zum Zitat Gregory SD, Stevens MC, Wu E, Fraser JF, Timms D (2013) In vitro evaluation of aortic insufficiency with a rotary left ventricular assist device. Artif Organs 37(9):802–809PubMed Gregory SD, Stevens MC, Wu E, Fraser JF, Timms D (2013) In vitro evaluation of aortic insufficiency with a rotary left ventricular assist device. Artif Organs 37(9):802–809PubMed
10.
Zurück zum Zitat Song Z, Gu K, Gao B, Wan F, Chang Y, Zeng Y (2014) Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: a numerical study. Med Sci Monit 20:733–741PubMedPubMedCentralCrossRef Song Z, Gu K, Gao B, Wan F, Chang Y, Zeng Y (2014) Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: a numerical study. Med Sci Monit 20:733–741PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Grosman-Rimon L, Billia F, Kobulnik J, Pollock Bar-Ziv S, Cherney DZ, Rao V (2018) The physiological rationale for incorporating pulsatility in continuous-flow left ventricular assist devices. Cardiol Rev 26(6):294–301PubMedCrossRef Grosman-Rimon L, Billia F, Kobulnik J, Pollock Bar-Ziv S, Cherney DZ, Rao V (2018) The physiological rationale for incorporating pulsatility in continuous-flow left ventricular assist devices. Cardiol Rev 26(6):294–301PubMedCrossRef
12.
Zurück zum Zitat Zakerzadeh R, Hsu MC, Sacks MS (2017) Computational methods for the aortic heart valve and its replacements. Expert Rev Med Dev 14(11):849–866CrossRef Zakerzadeh R, Hsu MC, Sacks MS (2017) Computational methods for the aortic heart valve and its replacements. Expert Rev Med Dev 14(11):849–866CrossRef
13.
Zurück zum Zitat Zhang Q, Gao B, Yu C (2018) The effects of left ventricular assist device support level on the biomechanical states of aortic valve. Med Sci Monit 24:2003–2017PubMedPubMedCentralCrossRef Zhang Q, Gao B, Yu C (2018) The effects of left ventricular assist device support level on the biomechanical states of aortic valve. Med Sci Monit 24:2003–2017PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hellmeier F, Nordmeyer S, Yevtushenko P, Bruening J, Berger F, Kuehne T, Goubergrits L, Kelm M (2018) Hemodynamic evaluation of a biological and mechanical aortic valve prosthesis using patient-specific MRI-based CFD. Artif Organs 42(1):49–57PubMedCrossRef Hellmeier F, Nordmeyer S, Yevtushenko P, Bruening J, Berger F, Kuehne T, Goubergrits L, Kelm M (2018) Hemodynamic evaluation of a biological and mechanical aortic valve prosthesis using patient-specific MRI-based CFD. Artif Organs 42(1):49–57PubMedCrossRef
15.
Zurück zum Zitat Mendez V, Di Giuseppe M, Pasta S (2018) Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Comput Biol Med 100:221–229PubMedCrossRef Mendez V, Di Giuseppe M, Pasta S (2018) Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Comput Biol Med 100:221–229PubMedCrossRef
16.
Zurück zum Zitat Marom G (2015) Numerical methods for fluid–structure interaction models of aortic valves. Arch Comput Methods Eng 22(4):595–620CrossRef Marom G (2015) Numerical methods for fluid–structure interaction models of aortic valves. Arch Comput Methods Eng 22(4):595–620CrossRef
17.
Zurück zum Zitat Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11(7):1085–1096PubMedCrossRef Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11(7):1085–1096PubMedCrossRef
18.
19.
Zurück zum Zitat Halevi R, Hamdan A, Marom G et al (2016) Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 54(11):1683–1694PubMedCrossRef Halevi R, Hamdan A, Marom G et al (2016) Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 54(11):1683–1694PubMedCrossRef
20.
Zurück zum Zitat Piatti F, Sturla F, Marom G, Sheriff J, Claiborne TE, Slepian MJ, Redaelli A, Bluestein D (2015) Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J Biomech 48(13):3641–3649PubMedCrossRef Piatti F, Sturla F, Marom G, Sheriff J, Claiborne TE, Slepian MJ, Redaelli A, Bluestein D (2015) Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J Biomech 48(13):3641–3649PubMedCrossRef
21.
Zurück zum Zitat Wald S, Liberzon A, Avrahami I (2018) A numerical study of the hemodynamic effect of the aortic valve on coronary flow. Biomech Model Mechanobiol 17(2):319–338PubMedCrossRef Wald S, Liberzon A, Avrahami I (2018) A numerical study of the hemodynamic effect of the aortic valve on coronary flow. Biomech Model Mechanobiol 17(2):319–338PubMedCrossRef
22.
Zurück zum Zitat Fedele M, Faggiano E, Dedè L, Quarteroni A (2017) A patient-specific aortic valve model based on moving resistive immersed implicit surfaces. Biomech Model Mechanobiol 16(5):1779–1803PubMedCrossRef Fedele M, Faggiano E, Dedè L, Quarteroni A (2017) A patient-specific aortic valve model based on moving resistive immersed implicit surfaces. Biomech Model Mechanobiol 16(5):1779–1803PubMedCrossRef
23.
Zurück zum Zitat Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld M (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50(2):173–182PubMedCrossRef Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld M (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50(2):173–182PubMedCrossRef
24.
Zurück zum Zitat Men Y, Lai Y, Dong S et al (2017) Research on CO dispersion of a vehicular exhaust plume using Lattice Boltzmann Method and Large Eddy Simulation. Transp Res D 52:202–214CrossRef Men Y, Lai Y, Dong S et al (2017) Research on CO dispersion of a vehicular exhaust plume using Lattice Boltzmann Method and Large Eddy Simulation. Transp Res D 52:202–214CrossRef
25.
Zurück zum Zitat Feiger B, Vardhan M, Gounley J et al (2019) Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in imagederived vasculature. Int J Numer Method Biomed Eng 35(6):e3198 Feiger B, Vardhan M, Gounley J et al (2019) Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in imagederived vasculature. Int J Numer Method Biomed Eng 35(6):e3198
26.
Zurück zum Zitat Jain K, Jiang J, Strother C, Mardal KA (2016) Transitional hemodynamics in intracranial aneurysms - comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging. Med Phys 43(11):6186PubMedCrossRef Jain K, Jiang J, Strother C, Mardal KA (2016) Transitional hemodynamics in intracranial aneurysms - comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging. Med Phys 43(11):6186PubMedCrossRef
27.
Zurück zum Zitat Kang X, Ji Y, Liu D et al (2008) Three-dimensional lattice Boltzmann method simulating blood flow in aortic arch. Chin Phys B 17:1041–1049CrossRef Kang X, Ji Y, Liu D et al (2008) Three-dimensional lattice Boltzmann method simulating blood flow in aortic arch. Chin Phys B 17:1041–1049CrossRef
28.
Zurück zum Zitat Stahl B, Chopard B, Latt J (2010) Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries. Comput Fluids 39:1625–1633CrossRef Stahl B, Chopard B, Latt J (2010) Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries. Comput Fluids 39:1625–1633CrossRef
29.
Zurück zum Zitat Mao W, Li K, Sun W (2016) Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 7(4):374–388PubMedPubMedCentralCrossRef Mao W, Li K, Sun W (2016) Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 7(4):374–388PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Boccadifuoco A, Mariotti A, Capellini K et al (2018) Validation of numerical simulations of thoracic aorta hemodynamics: comparison with in vivo measurements and stochastic sensitivity analysis. Cardiovasc Eng Technol 9(4):688–706PubMedCrossRef Boccadifuoco A, Mariotti A, Capellini K et al (2018) Validation of numerical simulations of thoracic aorta hemodynamics: comparison with in vivo measurements and stochastic sensitivity analysis. Cardiovasc Eng Technol 9(4):688–706PubMedCrossRef
31.
Zurück zum Zitat Pauls JP, Stevens MC, Bartnikowski N, Fraser JF, Gregory SD, Tansley G (2016) Evaluation of physiological control systems for rotary left ventricular assist devices: an in-vitro study. Ann Biomed Eng 44(8):2377–2387PubMedCrossRef Pauls JP, Stevens MC, Bartnikowski N, Fraser JF, Gregory SD, Tansley G (2016) Evaluation of physiological control systems for rotary left ventricular assist devices: an in-vitro study. Ann Biomed Eng 44(8):2377–2387PubMedCrossRef
32.
Zurück zum Zitat SIMULIA SIMULIA XFlow 2018 User Guide. Dassault Systemes Simulia Corp. RI, Providence, p 2018 SIMULIA SIMULIA XFlow 2018 User Guide. Dassault Systemes Simulia Corp. RI, Providence, p 2018
33.
Zurück zum Zitat Mei S, de Souza Júnior FSN, Kuan MYS, Green NC, Espino DM (2016) Hemodynamics through the congenitally bicuspid aortic valve: a computational fluid dynamics comparison of opening orifice area and leaflet orientation. Perfusion 31(8):683–690PubMedCrossRef Mei S, de Souza Júnior FSN, Kuan MYS, Green NC, Espino DM (2016) Hemodynamics through the congenitally bicuspid aortic valve: a computational fluid dynamics comparison of opening orifice area and leaflet orientation. Perfusion 31(8):683–690PubMedCrossRef
34.
Zurück zum Zitat Kemp I, Dellimore K, Rodriguez R, Scheffer C, Blaine D, Weich H, Doubell A (2013) Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve. Australas Phys Eng Sci Med 36(3):363–373PubMedCrossRef Kemp I, Dellimore K, Rodriguez R, Scheffer C, Blaine D, Weich H, Doubell A (2013) Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve. Australas Phys Eng Sci Med 36(3):363–373PubMedCrossRef
35.
Zurück zum Zitat Jorde UP, Uriel N, Nahumi N, Bejar D, Gonzalez-Costello J, Thomas SS, Han J, Morrison KA, Jones S, Kodali S, Hahn RT, Shames S, Yuzefpolskaya M, Colombo P, Takayama H, Naka Y (2014) Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail 7(2):310–319PubMedCrossRef Jorde UP, Uriel N, Nahumi N, Bejar D, Gonzalez-Costello J, Thomas SS, Han J, Morrison KA, Jones S, Kodali S, Hahn RT, Shames S, Yuzefpolskaya M, Colombo P, Takayama H, Naka Y (2014) Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail 7(2):310–319PubMedCrossRef
36.
Zurück zum Zitat Gasparovic H, Kopjar T, Saeed D, Cikes M, Svetina L, Petricevic M, Lovric D, Milicic D, Biocina B (2017) De novo aortic regurgitation after continuous-flow left ventricular assist device implantation. Ann Thorac Surg 104(2):704–711PubMedCrossRef Gasparovic H, Kopjar T, Saeed D, Cikes M, Svetina L, Petricevic M, Lovric D, Milicic D, Biocina B (2017) De novo aortic regurgitation after continuous-flow left ventricular assist device implantation. Ann Thorac Surg 104(2):704–711PubMedCrossRef
37.
Zurück zum Zitat Stephens EH, Han J, Trawick EA, di Martino ES, Akkiraju H, Brown LM, Connell JP, Grande-Allen KJ, Vunjak-Novakovic G, Takayama H (2018) Left-ventricular assist device impact on aortic valve mechanics, proteomics and ultrastructure. Ann Thorac Surg 105(2):572–580PubMedCrossRef Stephens EH, Han J, Trawick EA, di Martino ES, Akkiraju H, Brown LM, Connell JP, Grande-Allen KJ, Vunjak-Novakovic G, Takayama H (2018) Left-ventricular assist device impact on aortic valve mechanics, proteomics and ultrastructure. Ann Thorac Surg 105(2):572–580PubMedCrossRef
38.
Zurück zum Zitat Truby LK, Garan AR, Givens RC et al (2018) Aortic insufficiency during contemporary left ventricular assist device support: analysis of the INTERMACS registry. JACC Heart Fail 6(11):951–960PubMedPubMedCentralCrossRef Truby LK, Garan AR, Givens RC et al (2018) Aortic insufficiency during contemporary left ventricular assist device support: analysis of the INTERMACS registry. JACC Heart Fail 6(11):951–960PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Aggarwal A, Raghuvir R, Eryazici P, Macaluso G, Sharma P, Blair C, Tatooles AJ, Pappas PS, Bhat G (2013) The development of aortic insufficiency in continuous-flow left ventricular assist device-supported patients. Ann Thorac Surg 95(2):493–498PubMedCrossRef Aggarwal A, Raghuvir R, Eryazici P, Macaluso G, Sharma P, Blair C, Tatooles AJ, Pappas PS, Bhat G (2013) The development of aortic insufficiency in continuous-flow left ventricular assist device-supported patients. Ann Thorac Surg 95(2):493–498PubMedCrossRef
40.
Zurück zum Zitat Sugiura T, Kurihara C, Kawabori M et al (2019) Concomitant valve procedures in patients undergoing continuous-flow left ventricular assist device implantation: A single-center experience. J Thorac Cardiovasc Surg 158(4):1083–1089PubMedCrossRef Sugiura T, Kurihara C, Kawabori M et al (2019) Concomitant valve procedures in patients undergoing continuous-flow left ventricular assist device implantation: A single-center experience. J Thorac Cardiovasc Surg 158(4):1083–1089PubMedCrossRef
41.
Zurück zum Zitat Selmi M, Chiu WC, Chivukula VK, Melisurgo G, Beckman JA, Mahr C, Aliseda A, Votta E, Redaelli A, Slepian MJ, Bluestein D, Pappalardo F, Consolo F (2019) Blood damage in left ventricular assist devices: pump thrombosis or system thrombosis? Int J Artif Organs 42(3):113–124PubMedCrossRef Selmi M, Chiu WC, Chivukula VK, Melisurgo G, Beckman JA, Mahr C, Aliseda A, Votta E, Redaelli A, Slepian MJ, Bluestein D, Pappalardo F, Consolo F (2019) Blood damage in left ventricular assist devices: pump thrombosis or system thrombosis? Int J Artif Organs 42(3):113–124PubMedCrossRef
42.
Zurück zum Zitat Mao W, Li K, Sun W et al (2016) Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 7(4):374–388PubMedPubMedCentralCrossRef Mao W, Li K, Sun W et al (2016) Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 7(4):374–388PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Wang TS, Hernandez AF, Felker GM et al (2014) Valvular heart disease in patients supported with left ventricular assist devices. Circ Heart Fail 7(1):215–222PubMedCrossRef Wang TS, Hernandez AF, Felker GM et al (2014) Valvular heart disease in patients supported with left ventricular assist devices. Circ Heart Fail 7(1):215–222PubMedCrossRef
44.
Zurück zum Zitat Marcucci L, Washio T, Yanagida T (2019) Proposed mechanism for the length dependence of the force developed in maximally activated muscles. Sci Rep 9(1):1317PubMedPubMedCentralCrossRef Marcucci L, Washio T, Yanagida T (2019) Proposed mechanism for the length dependence of the force developed in maximally activated muscles. Sci Rep 9(1):1317PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Cowger J, Pagani FD, Haft JW et al (2010) The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail 3:668–674PubMedPubMedCentralCrossRef Cowger J, Pagani FD, Haft JW et al (2010) The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail 3:668–674PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Hatano M, Kinugawa K, Shiga T, Kato N, Endo M, Hisagi M, Nishimura T, Yao A, Hirata Y, Kyo S, Ono M, Nagai R (2011) Less frequent opening of the aortic valve and a continuous flow pump are risk factors for postoperative onset of aortic insufficiency in patients with a left ventricular assist device. Circ J 75:1147–1155PubMedCrossRef Hatano M, Kinugawa K, Shiga T, Kato N, Endo M, Hisagi M, Nishimura T, Yao A, Hirata Y, Kyo S, Ono M, Nagai R (2011) Less frequent opening of the aortic valve and a continuous flow pump are risk factors for postoperative onset of aortic insufficiency in patients with a left ventricular assist device. Circ J 75:1147–1155PubMedCrossRef
47.
Zurück zum Zitat Mudd JO, Cuda JD, Halushka M et al (2008) Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant 27:1269–1274PubMedCrossRef Mudd JO, Cuda JD, Halushka M et al (2008) Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant 27:1269–1274PubMedCrossRef
48.
Zurück zum Zitat Joda A, Jin Z, Haverich A, Summers J, Korossis S (2016) Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. J Biomech 49(12):2502–2512PubMedCrossRef Joda A, Jin Z, Haverich A, Summers J, Korossis S (2016) Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. J Biomech 49(12):2502–2512PubMedCrossRef
49.
Zurück zum Zitat Gao B, Chang Y, Gu K, Zeng Y, Liu Y (2012) A pulsatile control algorithm of continuous-flow pump for heart recovery. ASAIO J 58(4):343–352PubMedCrossRef Gao B, Chang Y, Gu K, Zeng Y, Liu Y (2012) A pulsatile control algorithm of continuous-flow pump for heart recovery. ASAIO J 58(4):343–352PubMedCrossRef
50.
Zurück zum Zitat Naito N, Nishimura T, Iizuka K, Takewa Y, Umeki A, Ando M, Ono M, Tatsumi E (2018) Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility. Interact Cardiovasc Thorac Surg 26(1):119–123PubMedCrossRef Naito N, Nishimura T, Iizuka K, Takewa Y, Umeki A, Ando M, Ono M, Tatsumi E (2018) Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility. Interact Cardiovasc Thorac Surg 26(1):119–123PubMedCrossRef
51.
Zurück zum Zitat Gao B, Chang Y, Xuan Y, Zeng Y, Liu Y (2013) The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system. Artif Organs 37(2):157–165PubMedCrossRef Gao B, Chang Y, Xuan Y, Zeng Y, Liu Y (2013) The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system. Artif Organs 37(2):157–165PubMedCrossRef
Metadaten
Titel
Hemodynamic effects of support modes of LVADs on the aortic valve
verfasst von
Bin Gao
Qi Zhang
Yu Chang
Publikationsdatum
10.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 12/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-02058-y

Weitere Artikel der Ausgabe 12/2019

Medical & Biological Engineering & Computing 12/2019 Zur Ausgabe