Skip to main content
Erschienen in: Microsystem Technologies 10/2020

09.11.2017 | Technical Paper

Highly sensitive refractive index sensor based on degeneracy in specialty optical fibers: a new approach

verfasst von: Arpan Roy, Abhijit Biswas, R. K. Varshney, Somnath Ghosh

Erschienen in: Microsystem Technologies | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the phenomenon of deliberate inter-modal interactions in a specially designed index guided Microstructured Optical Fiber (MOF) by exploiting multipole expansion method (White et al. 2002). The MOF is designed in such a way that the first layer of holes is judiciously filled with a material having refractive index slightly greater than the background material or core and remaining holes are filled with air. Accordingly, we find an interesting phenomenon of mode crossing between the fundamental mode and a targeted defect mode while tuning the wavelength. Exploring this transition wavelength of the mode crossing, we propose a design of a fiber optic sensor for refractive index measurement (Silva et al. 2014) with enhanced sensitivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 15:22490–22508CrossRef Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 15:22490–22508CrossRef
Zurück zum Zitat Birks TA, Knight JC, Russell PSJ (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22:961CrossRef Birks TA, Knight JC, Russell PSJ (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22:961CrossRef
Zurück zum Zitat Digonnet MJF, Kim HK, Shin J, Fan S, Kino GS (2004) Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers. Opt Exp 12:1864–1872CrossRef Digonnet MJF, Kim HK, Shin J, Fan S, Kino GS (2004) Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers. Opt Exp 12:1864–1872CrossRef
Zurück zum Zitat Efendioglu HS (2017) A review of fiber-optic modal modulated sensors: specklegram and modal power distribution sensing. IEEE Sens J 17(7):2055–2064CrossRef Efendioglu HS (2017) A review of fiber-optic modal modulated sensors: specklegram and modal power distribution sensing. IEEE Sens J 17(7):2055–2064CrossRef
Zurück zum Zitat Kaczmarek C (2014) Polarization-maintaining photonic crystal fiber modal interferometer. In: Proc. SPIE 9291, 13th International scientific conference on optical sensors and electronic sensors, 92910G, August 19 Kaczmarek C (2014) Polarization-maintaining photonic crystal fiber modal interferometer. In: Proc. SPIE 9291, 13th International scientific conference on optical sensors and electronic sensors, 92910G, August 19
Zurück zum Zitat Kim HK, Shin J, Fan S, Digonnet MJF, Kino GS (2004) Designing air-core photonic-bandgap fibers free of surface modes. IEEE J Quantum Electron 40:551–556CrossRef Kim HK, Shin J, Fan S, Digonnet MJF, Kino GS (2004) Designing air-core photonic-bandgap fibers free of surface modes. IEEE J Quantum Electron 40:551–556CrossRef
Zurück zum Zitat Knight JC, Birks TA, Cregan RF, Russell PSJ, Sandro JPD (1998) Large mode area photonic crystal fibre. Electron Lett 34(13):1347–1348CrossRef Knight JC, Birks TA, Cregan RF, Russell PSJ, Sandro JPD (1998) Large mode area photonic crystal fibre. Electron Lett 34(13):1347–1348CrossRef
Zurück zum Zitat Luan N, Ding C, Yao J (2016) A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber. IEEE Photonics J 8(2):1–8CrossRef Luan N, Ding C, Yao J (2016) A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber. IEEE Photonics J 8(2):1–8CrossRef
Zurück zum Zitat Osorio JH, Mosquera L, Gouveia CJ, Biazoli CR, Hayashi JG, Jorge PAS, Cordeiro CMB (2013) High sensitivity LPG Mach- Zehnder sensor for real-time fuel conformity analysis. Meas Sci Technol 24:015102CrossRef Osorio JH, Mosquera L, Gouveia CJ, Biazoli CR, Hayashi JG, Jorge PAS, Cordeiro CMB (2013) High sensitivity LPG Mach- Zehnder sensor for real-time fuel conformity analysis. Meas Sci Technol 24:015102CrossRef
Zurück zum Zitat Park KS, Choi HY, Park SJ, Paek UC, Lee BH (2010) Temperature robust refractive index sensor based on a photonic crystal fiber interferometer. IEEE Sens J 10:1147–1148CrossRef Park KS, Choi HY, Park SJ, Paek UC, Lee BH (2010) Temperature robust refractive index sensor based on a photonic crystal fiber interferometer. IEEE Sens J 10:1147–1148CrossRef
Zurück zum Zitat Pereira DA, Frazão O, Santos JL (2004) Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature. Opt Eng 43:299–304CrossRef Pereira DA, Frazão O, Santos JL (2004) Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature. Opt Eng 43:299–304CrossRef
Zurück zum Zitat Russell PS (2006) Photonic-crystal fibers. J Light Technol 24(12):4729–4749CrossRef Russell PS (2006) Photonic-crystal fibers. J Light Technol 24(12):4729–4749CrossRef
Zurück zum Zitat Russell PStJ, Atkin DM, Birks TA, Roberts PJ (1996) Bound modes of two-dimensional photonic crystal waveguides. In: Rarity JG, Weisbuch C (eds) Quantum optics in wavelength scale structures. Kluwer Academic Press, pp 203–219 Russell PStJ, Atkin DM, Birks TA, Roberts PJ (1996) Bound modes of two-dimensional photonic crystal waveguides. In: Rarity JG, Weisbuch C (eds) Quantum optics in wavelength scale structures. Kluwer Academic Press, pp 203–219
Zurück zum Zitat Silva S, Santos JL, Malcata FX, Kobelke J, Schuster K, Frazão O (2011) Optical refractometer based on large-core air-clad photonic crystal fibers. Opt Lett 36:852–885CrossRef Silva S, Santos JL, Malcata FX, Kobelke J, Schuster K, Frazão O (2011) Optical refractometer based on large-core air-clad photonic crystal fibers. Opt Lett 36:852–885CrossRef
Zurück zum Zitat Silva S, Roriz P, Frazão O (2014) Refractive index measurement of liquids based on microstructured optical fibers. Photonics 1:516–529CrossRef Silva S, Roriz P, Frazão O (2014) Refractive index measurement of liquids based on microstructured optical fibers. Photonics 1:516–529CrossRef
Zurück zum Zitat Sun B, Chen MY, Zhang YK, Yang JC, Yao JQ, Cui HX (2011) Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing. Opt Exp 19:4091–4100CrossRef Sun B, Chen MY, Zhang YK, Yang JC, Yao JQ, Cui HX (2011) Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing. Opt Exp 19:4091–4100CrossRef
Zurück zum Zitat Thyagarajan K, Varshney RK, Palai P, Ghatak AK, Goyal IC (1996) A novel design of a dispersion compensating fiber. IEEE Photonics Tech Lett 8:1510–1512CrossRef Thyagarajan K, Varshney RK, Palai P, Ghatak AK, Goyal IC (1996) A novel design of a dispersion compensating fiber. IEEE Photonics Tech Lett 8:1510–1512CrossRef
Zurück zum Zitat Town GE, Yuan W, McCosker R, Bang O (2010) Microstructured optical fiber refractive index sensor. Opt Lett 35:856–858CrossRef Town GE, Yuan W, McCosker R, Bang O (2010) Microstructured optical fiber refractive index sensor. Opt Lett 35:856–858CrossRef
Zurück zum Zitat Varshney SK, Saitoh K, Koshiba M (2005) A novel design for dispersion compensating photonic crystal fiber Raman amplifier. IEEE Photonics Technol Lett 17(10):2062–2064CrossRef Varshney SK, Saitoh K, Koshiba M (2005) A novel design for dispersion compensating photonic crystal fiber Raman amplifier. IEEE Photonics Technol Lett 17(10):2062–2064CrossRef
Zurück zum Zitat Wheeler NV, Heidt AM, Baddela NK, Fokoua EN, Hayes JR, Sandoghchi SR, Poletti F, Petrovich MN, Richardson DJ (2014) Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core–photonic-bandgap fiber. Opt Lett 39:295–298CrossRef Wheeler NV, Heidt AM, Baddela NK, Fokoua EN, Hayes JR, Sandoghchi SR, Poletti F, Petrovich MN, Richardson DJ (2014) Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core–photonic-bandgap fiber. Opt Lett 39:295–298CrossRef
Zurück zum Zitat White TP, Kuhlmey BT, McPhedran RC, Maystre D, Renversez G, Sterke CM, Botten LC (2002) Multipole method for microstructured optical fibers. I. Formulation. J Opt Soc Am B 19:2322–2330CrossRef White TP, Kuhlmey BT, McPhedran RC, Maystre D, Renversez G, Sterke CM, Botten LC (2002) Multipole method for microstructured optical fibers. I. Formulation. J Opt Soc Am B 19:2322–2330CrossRef
Zurück zum Zitat Wu DKC, Boris TK, Benjamin JE (2009) Ultrasensitive photonic crystal fiber refractive index sensor. Opt Lett 34:322–324CrossRef Wu DKC, Boris TK, Benjamin JE (2009) Ultrasensitive photonic crystal fiber refractive index sensor. Opt Lett 34:322–324CrossRef
Zurück zum Zitat Zibaii MI, Kazemi A, Latifi H, Azar MK, Hosseini SM, Ghezelaiagh MH (2010a) Measuring bacterial growth by refractive index tapered fiber optic biosensor. J Photochem Photobiol B 3:313–320CrossRef Zibaii MI, Kazemi A, Latifi H, Azar MK, Hosseini SM, Ghezelaiagh MH (2010a) Measuring bacterial growth by refractive index tapered fiber optic biosensor. J Photochem Photobiol B 3:313–320CrossRef
Zurück zum Zitat Zibaii MI, Latifi H, Karami M, Gholami M, Hosseini SM, Ghezelayagh MH (2010b) Non-adiabatic tapered optical fiber sensor for measuring the interaction between alpha-amino acids in aqueous carbohydrate solution. Meas Sci Technol 21:10580CrossRef Zibaii MI, Latifi H, Karami M, Gholami M, Hosseini SM, Ghezelayagh MH (2010b) Non-adiabatic tapered optical fiber sensor for measuring the interaction between alpha-amino acids in aqueous carbohydrate solution. Meas Sci Technol 21:10580CrossRef
Metadaten
Titel
Highly sensitive refractive index sensor based on degeneracy in specialty optical fibers: a new approach
verfasst von
Arpan Roy
Abhijit Biswas
R. K. Varshney
Somnath Ghosh
Publikationsdatum
09.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3622-3

Weitere Artikel der Ausgabe 10/2020

Microsystem Technologies 10/2020 Zur Ausgabe

Neuer Inhalt