Skip to main content
Erschienen in: Journal of Materials Science 26/2020

28.05.2020 | Energy materials

Hydrangea-like microspheres as anodes toward long-life and high-capacity lithium storage

verfasst von: Chunwei Dong, Wang Gao, Bo Jin, Wei Zhang, Zi Wen, Enmei Jin, Sangmun Jeong, Qing Jiang

Erschienen in: Journal of Materials Science | Ausgabe 26/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transition metal oxides show great promise as high-energy anodes for lithium-ion batteries (LIBs), thanks to appealing combination of high theoretical specific capacity and low cost. However, they still undergo dramatic volumetric expansion and low electronic/ionic conductivities, which leads to numerous problems, for instance, rapid capacity degradation and electrode pulverization, thus severely hindering their practical applications. In this paper, a designed hydrangea-like microstructure consisting of MnO2 nanosheets and ZnFe2O4 microspheres is achieved by a hydrothermal route. When evaluated as an anode material for LIBs, ZnFe2O4@MnO2 electrode displays a high specific capacity of 2707 mA h g−1 after 100 cycles at 0.2 A g−1. Even at a higher current density of 2 A g−1, the electrode has a long lifespan with a specific capacity of 1458 mA h g−1 after 800 cycles and outperforms the previously reported zinc ferrite composite electrodes. These excellent electrochemical properties are ascribed to the hydrangea-like structure, which buffers the volume variation of ZnFe2O4 during charging/discharging process and decreases the internal resistance significantly due to excellent contact between ZnFe2O4 microparticles and MnO2 nanosheets. Consequently, the facile synthesis strategy and superior Li-storage performance make the hydrangea-like ZnFe2O4@MnO2 microspheres the promising candidate for next-generation high-performance LIBs in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Du M, Liao K, Lu Q, Shao Z (2019) Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ Sci 12:1780–1804CrossRef Du M, Liao K, Lu Q, Shao Z (2019) Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ Sci 12:1780–1804CrossRef
2.
Zurück zum Zitat Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef
3.
Zurück zum Zitat Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
4.
Zurück zum Zitat Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRef Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRef
5.
Zurück zum Zitat Li H, Yang T, Jin B, Zhao M, Jin E, Jeong S, Jiang Q (2019) Enhanced reversible capability of a macroporous ZnMn2O4/C microsphere anode with a water-soluble binder for long-life and high-rate lithium–ion storage. Inorg Chem Front 6:1535–1545CrossRef Li H, Yang T, Jin B, Zhao M, Jin E, Jeong S, Jiang Q (2019) Enhanced reversible capability of a macroporous ZnMn2O4/C microsphere anode with a water-soluble binder for long-life and high-rate lithium–ion storage. Inorg Chem Front 6:1535–1545CrossRef
6.
Zurück zum Zitat Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
7.
Zurück zum Zitat Yuan C, Cao H, Zhu S, Hua H, Hou L (2015) Core-hell ZnO/ZnFe2O4@C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. J Mater Chem A 3:20389–20398CrossRef Yuan C, Cao H, Zhu S, Hua H, Hou L (2015) Core-hell ZnO/ZnFe2O4@C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. J Mater Chem A 3:20389–20398CrossRef
8.
Zurück zum Zitat Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan-like tin-carbon electrode. Angew Chem Int Ed 48:1660–1663CrossRef Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan-like tin-carbon electrode. Angew Chem Int Ed 48:1660–1663CrossRef
9.
Zurück zum Zitat Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261CrossRef Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261CrossRef
10.
Zurück zum Zitat Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916CrossRef Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916CrossRef
11.
Zurück zum Zitat Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium–ion battery applications. Nat Mater 5:567–573CrossRef Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium–ion battery applications. Nat Mater 5:567–573CrossRef
12.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium–ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium–ion batteries. Nature 407:496–499CrossRef
13.
Zurück zum Zitat Wang M, Huang Y, Zhu Y, Yu M, Qin X, Zhang H (2019) Core-shell Mn3O4 nanorods with porous Fe2O3 layer supported on graphene conductive nanosheets for high-performance lithium storage application. Compos Part B 167:668–675CrossRef Wang M, Huang Y, Zhu Y, Yu M, Qin X, Zhang H (2019) Core-shell Mn3O4 nanorods with porous Fe2O3 layer supported on graphene conductive nanosheets for high-performance lithium storage application. Compos Part B 167:668–675CrossRef
14.
Zurück zum Zitat Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H (2015) 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium–ion batteries. Adv Energy Mater 5:1401421CrossRef Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H (2015) 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium–ion batteries. Adv Energy Mater 5:1401421CrossRef
15.
Zurück zum Zitat Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium–ion batteries. Adv Mater 20:1160–1165CrossRef Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium–ion batteries. Adv Mater 20:1160–1165CrossRef
16.
Zurück zum Zitat Tan G, Wu F, Yuan Y, Chen R, Zhao T, Yao Y, Qian J, Liu J, Ye Y, Shahbazian-Yassar R, Lu J, Amine K (2016) Freestanding three-dimensional core-shell nanoarrays for lithium–ion battery anodes. Nat Commun 7:11774CrossRef Tan G, Wu F, Yuan Y, Chen R, Zhao T, Yao Y, Qian J, Liu J, Ye Y, Shahbazian-Yassar R, Lu J, Amine K (2016) Freestanding three-dimensional core-shell nanoarrays for lithium–ion battery anodes. Nat Commun 7:11774CrossRef
17.
Zurück zum Zitat Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium–ion batteries. Adv Sci 5:1700592CrossRef Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium–ion batteries. Adv Sci 5:1700592CrossRef
18.
Zurück zum Zitat Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRef Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRef
19.
Zurück zum Zitat Mueller F, Bresser D, Paillard E, Winter M, Passerini S (2013) Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. J Power Sources 236:87–94CrossRef Mueller F, Bresser D, Paillard E, Winter M, Passerini S (2013) Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. J Power Sources 236:87–94CrossRef
20.
Zurück zum Zitat Zhong XB, Yang ZZ, Wang HY, Lu L, Jin B, Zha M, Jiang QC (2016) A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J Power Sources 306:718–723CrossRef Zhong XB, Yang ZZ, Wang HY, Lu L, Jin B, Zha M, Jiang QC (2016) A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J Power Sources 306:718–723CrossRef
21.
Zurück zum Zitat Jiang B, Han C, Li B, He Y, Lin Z (2016) In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10:2728–2735CrossRef Jiang B, Han C, Li B, He Y, Lin Z (2016) In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10:2728–2735CrossRef
22.
Zurück zum Zitat Chen CJ, Greenblatt M, Waszczak JV (1986) Lithium insertion into spinel ferrites. Solid State Ion 18:838–846CrossRef Chen CJ, Greenblatt M, Waszczak JV (1986) Lithium insertion into spinel ferrites. Solid State Ion 18:838–846CrossRef
23.
Zurück zum Zitat Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S (2013) Carbon coated ZnFe2O4 nanoparticles for advanced lithium–ion anodes. Adv Energy Mater 3:513–523CrossRef Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S (2013) Carbon coated ZnFe2O4 nanoparticles for advanced lithium–ion anodes. Adv Energy Mater 3:513–523CrossRef
24.
Zurück zum Zitat Sun X, Zhang H, Zhou L, Huang X, Yu C (2016) Polypyrrole-coated zinc ferrite hollow spheres with improved cycling stability for lithium–ion batteries. Small 12:3732–3737CrossRef Sun X, Zhang H, Zhou L, Huang X, Yu C (2016) Polypyrrole-coated zinc ferrite hollow spheres with improved cycling stability for lithium–ion batteries. Small 12:3732–3737CrossRef
25.
Zurück zum Zitat Fu Y, Wei Q, Wang X, Shu H, Yang X, Sun S (2015) Porous hollow α-Fe2O3@TiO2 core-hell nanospheres for superior lithium/sodium storage capability. J Mater Chem A 3:13807–13818CrossRef Fu Y, Wei Q, Wang X, Shu H, Yang X, Sun S (2015) Porous hollow α-Fe2O3@TiO2 core-hell nanospheres for superior lithium/sodium storage capability. J Mater Chem A 3:13807–13818CrossRef
26.
Zurück zum Zitat Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053CrossRef Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053CrossRef
27.
Zurück zum Zitat Li M, Yin YX, Li C, Zhang F, Wan LJ, Xu S, Evans DG (2012) Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium–ion batteries. Chem Commun 48:410–412CrossRef Li M, Yin YX, Li C, Zhang F, Wan LJ, Xu S, Evans DG (2012) Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium–ion batteries. Chem Commun 48:410–412CrossRef
28.
Zurück zum Zitat Gu X, Chen L, Ju Z, Xu H, Yang J, Qian Y (2013) Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium–ion batteries. Adv Funct Mater 23:4049–4056CrossRef Gu X, Chen L, Ju Z, Xu H, Yang J, Qian Y (2013) Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium–ion batteries. Adv Funct Mater 23:4049–4056CrossRef
29.
Zurück zum Zitat Fang Z, Zhang L, Qi H, Yue H, Zhang T, Zhao X, Chen G, Wei Y, Wang C, Zhang D (2018) Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium–ion batteries. J Alloy Compd 762:480–487CrossRef Fang Z, Zhang L, Qi H, Yue H, Zhang T, Zhao X, Chen G, Wei Y, Wang C, Zhang D (2018) Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium–ion batteries. J Alloy Compd 762:480–487CrossRef
30.
Zurück zum Zitat Zhou X, Wang B, Sun H, Wang C, Sun P, Li X, Hu X, Lu G (2016) Template-free synthesis of hierarchical ZnFe2O4 yolk-shell microspheres for high-sensitivity acetone sensors. Nanoscale 8:5446–5453CrossRef Zhou X, Wang B, Sun H, Wang C, Sun P, Li X, Hu X, Lu G (2016) Template-free synthesis of hierarchical ZnFe2O4 yolk-shell microspheres for high-sensitivity acetone sensors. Nanoscale 8:5446–5453CrossRef
31.
Zurück zum Zitat Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714CrossRef Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714CrossRef
32.
Zurück zum Zitat Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRef Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRef
33.
Zurück zum Zitat Lin L, Pan Q (2015) ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J Mater Chem A 3:1724–1729CrossRef Lin L, Pan Q (2015) ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J Mater Chem A 3:1724–1729CrossRef
34.
Zurück zum Zitat Hou Y, Li X, Zhao Q, Chen G (2013) ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl Catal B: Environ 142–143:80–88CrossRef Hou Y, Li X, Zhao Q, Chen G (2013) ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl Catal B: Environ 142–143:80–88CrossRef
35.
Zurück zum Zitat Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319CrossRef Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319CrossRef
36.
Zurück zum Zitat Jiang ZJ, Cheng S, Rong H, Jiang Z, Huang J (2017) General synthesis of MFe2O4/carbon (M = Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J Mater Chem A 5:23641–23650CrossRef Jiang ZJ, Cheng S, Rong H, Jiang Z, Huang J (2017) General synthesis of MFe2O4/carbon (M = Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J Mater Chem A 5:23641–23650CrossRef
37.
Zurück zum Zitat Zhao D, Xiao Y, Wang X, Gao Q, Cao M (2014) Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 7:124–133CrossRef Zhao D, Xiao Y, Wang X, Gao Q, Cao M (2014) Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 7:124–133CrossRef
38.
Zurück zum Zitat Zhang L, Wei T, Yue J, Sheng L, Jiang Z, Yang D, Yuan L, Fan Z (2017) Ultra-small and highly crystallized ZnFe2O4 nanoparticles within double graphene networks for super-long life lithium–ion batteries. J Mater Chem A 5:11188–11196CrossRef Zhang L, Wei T, Yue J, Sheng L, Jiang Z, Yang D, Yuan L, Fan Z (2017) Ultra-small and highly crystallized ZnFe2O4 nanoparticles within double graphene networks for super-long life lithium–ion batteries. J Mater Chem A 5:11188–11196CrossRef
39.
Zurück zum Zitat Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855–861CrossRef Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855–861CrossRef
40.
Zurück zum Zitat Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRef Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRef
41.
Zurück zum Zitat Li L, Raji ARO, Tour JM (2013) Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25:6298–6302CrossRef Li L, Raji ARO, Tour JM (2013) Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25:6298–6302CrossRef
42.
Zurück zum Zitat Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815CrossRef Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815CrossRef
43.
Zurück zum Zitat Liang X, Nazar LF (2016) In situ reactive assembly of scalable core-hell sulfur-MnO2 composite cathodes. ACS Nano 10:4192–4198CrossRef Liang X, Nazar LF (2016) In situ reactive assembly of scalable core-hell sulfur-MnO2 composite cathodes. ACS Nano 10:4192–4198CrossRef
44.
Zurück zum Zitat Yang X, Xue H, Yang Q, Yuan R, Kang W, Lee CS (2017) Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem Eng J 308:340–346CrossRef Yang X, Xue H, Yang Q, Yuan R, Kang W, Lee CS (2017) Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem Eng J 308:340–346CrossRef
45.
Zurück zum Zitat Ma Y, Ma Y, Geiger D, Kaiser U, Zhang H, Kim GT, Diemant T, Behm RJ, Varzi A, Passerini S (2017) ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium–ion batteries. Nano Energy 42:341–352CrossRef Ma Y, Ma Y, Geiger D, Kaiser U, Zhang H, Kim GT, Diemant T, Behm RJ, Varzi A, Passerini S (2017) ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium–ion batteries. Nano Energy 42:341–352CrossRef
46.
Zurück zum Zitat Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597CrossRef Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597CrossRef
47.
Zurück zum Zitat Dong Y, Xia Y, Chui YS, Cao C, Zapien JA (2015) Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J Power Sources 275:769–776CrossRef Dong Y, Xia Y, Chui YS, Cao C, Zapien JA (2015) Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J Power Sources 275:769–776CrossRef
48.
Zurück zum Zitat Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium–ion batteries. Adv Mater 26:6622–6628CrossRef Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium–ion batteries. Adv Mater 26:6622–6628CrossRef
49.
Zurück zum Zitat Wu J, Song Y, Zhou R, Chen S, Zuo L, Hou H, Wang L (2015) Zn-Fe-ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium–ion batteries. J Mater Chem A 3:7793–7798CrossRef Wu J, Song Y, Zhou R, Chen S, Zuo L, Hou H, Wang L (2015) Zn-Fe-ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium–ion batteries. J Mater Chem A 3:7793–7798CrossRef
50.
Zurück zum Zitat Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861CrossRef Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861CrossRef
51.
Zurück zum Zitat Wang N, Xu H, Chen L, Gu X, Yang J, Qian Y (2014) A general approach for MFe2O4 (M = Zn Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. J Power Sources 247:163–169CrossRef Wang N, Xu H, Chen L, Gu X, Yang J, Qian Y (2014) A general approach for MFe2O4 (M = Zn Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. J Power Sources 247:163–169CrossRef
52.
Zurück zum Zitat Yang T, Zhang W, Li L, Jin B, Jin E, Jeong S, Jiang Q (2017) In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Appl Surf Sci 425:978–987CrossRef Yang T, Zhang W, Li L, Jin B, Jin E, Jeong S, Jiang Q (2017) In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Appl Surf Sci 425:978–987CrossRef
53.
Zurück zum Zitat Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef
54.
Zurück zum Zitat Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X (2014) Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium–ion batteries. J Power Sources 258:305–313CrossRef Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X (2014) Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium–ion batteries. J Power Sources 258:305–313CrossRef
55.
Zurück zum Zitat Xiong S, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater 22:861–871CrossRef Xiong S, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater 22:861–871CrossRef
56.
Zurück zum Zitat Dedryvère R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16:1056–1061CrossRef Dedryvère R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16:1056–1061CrossRef
57.
Zurück zum Zitat Chu Y, Guo L, Xi B, Feng Z, Wu F, Lin Y, Liu J, Sun D, Feng J, Qian Y, Xiong S (2018) Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv Mater 30:1704244CrossRef Chu Y, Guo L, Xi B, Feng Z, Wu F, Lin Y, Liu J, Sun D, Feng J, Qian Y, Xiong S (2018) Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv Mater 30:1704244CrossRef
58.
Zurück zum Zitat Li YQ, Li JC, Lang XY, Wen Z, Zheng WT, Jiang Q (2017) Lithium ion breathable electrodes with 3D hierarchical architecture for ultrastable and high-capacity lithium storage. Adv Funct Mater 27:1700447CrossRef Li YQ, Li JC, Lang XY, Wen Z, Zheng WT, Jiang Q (2017) Lithium ion breathable electrodes with 3D hierarchical architecture for ultrastable and high-capacity lithium storage. Adv Funct Mater 27:1700447CrossRef
59.
Zurück zum Zitat Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X (2015) Self-sacrifice template fabrication of hierarchical mesoporous Bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium–ion battery. Adv Funct Mater 25:238–246CrossRef Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X (2015) Self-sacrifice template fabrication of hierarchical mesoporous Bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium–ion battery. Adv Funct Mater 25:238–246CrossRef
60.
Zurück zum Zitat Hou L, Bao R, Zhang Y, Sun X, Zhang J, Dou H, Zhang X, Yuan C (2018) Structure-designed synthesis of yolk-shell hollow ZnFe2O4/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. J Mater Chem A 6:17947–17958CrossRef Hou L, Bao R, Zhang Y, Sun X, Zhang J, Dou H, Zhang X, Yuan C (2018) Structure-designed synthesis of yolk-shell hollow ZnFe2O4/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. J Mater Chem A 6:17947–17958CrossRef
61.
Zurück zum Zitat Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054CrossRef Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054CrossRef
62.
Zurück zum Zitat Hou L, Hua H, Lian L, Cao H, Zhu S, Yuan C (2015) Green template-free synthesis of hierarchical shuttle-shaped mesoporous ZnFe2O4 microrods with enhanced lithium storage for advanced Li-ion batteries. Chem Eur J 21:13012–13019CrossRef Hou L, Hua H, Lian L, Cao H, Zhu S, Yuan C (2015) Green template-free synthesis of hierarchical shuttle-shaped mesoporous ZnFe2O4 microrods with enhanced lithium storage for advanced Li-ion batteries. Chem Eur J 21:13012–13019CrossRef
63.
Zurück zum Zitat Hou L, Bao R, Denis D, Sun X, Zhang J, Zaman F, Yuan C (2019) Synthesis of ultralong ZnFe2O4@polypyrrole nanowires with enhanced electrochemical Li-storage behaviors for lithium–ion batteries. Electrochim Acta 306:198–208CrossRef Hou L, Bao R, Denis D, Sun X, Zhang J, Zaman F, Yuan C (2019) Synthesis of ultralong ZnFe2O4@polypyrrole nanowires with enhanced electrochemical Li-storage behaviors for lithium–ion batteries. Electrochim Acta 306:198–208CrossRef
64.
Zurück zum Zitat Hameed AS, Bahiraei H, Reddy MV, Shoushtari MZ, Vittal JJ, Ong CK, Chowdari BVR (2014) Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles. ACS Appl Mater Interfaces 6:10744–10753CrossRef Hameed AS, Bahiraei H, Reddy MV, Shoushtari MZ, Vittal JJ, Ong CK, Chowdari BVR (2014) Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles. ACS Appl Mater Interfaces 6:10744–10753CrossRef
65.
Zurück zum Zitat Zhong XB, Wang HY, Yang ZZ, Jin B, Jiang QC (2015) Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium–ion batteries. J Power Sources 296:298–304CrossRef Zhong XB, Wang HY, Yang ZZ, Jin B, Jiang QC (2015) Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium–ion batteries. J Power Sources 296:298–304CrossRef
Metadaten
Titel
Hydrangea-like microspheres as anodes toward long-life and high-capacity lithium storage
verfasst von
Chunwei Dong
Wang Gao
Bo Jin
Wei Zhang
Zi Wen
Enmei Jin
Sangmun Jeong
Qing Jiang
Publikationsdatum
28.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 26/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04868-0

Weitere Artikel der Ausgabe 26/2020

Journal of Materials Science 26/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.