Skip to main content
Erschienen in: Microsystem Technologies 2/2020

17.06.2019 | Technical Paper

Hydrothermal analysis of nanoparticles transportation through a porous compound cavity utilizing two temperature model and radiation heat transfer under the effects of magnetic field

verfasst von: Zhixiong Li, Fatih Selimefendigil, Mohsen Sheikholeslami, Ahmad Shafee, Metib Alghamdi

Erschienen in: Microsystem Technologies | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In current text, we developed CVFEM code for nanomaterial hydrothermal management through a permeable compound cavity including two temperature model. Radiation and Lorentz source terms were added in formulations. Impacts of radiation parameter, Rayleigh, Hartmann number, interface heat transfer parameter and nanoparticles’ shape on nanofluid behavior were demonstrated. Contours indicate that convective mode becomes stronger with augment of buoyancy term. By increasing Nhs, conduction becomes more effective and Nusselt number reduces. As radiation term enhances, Nusselt number augments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alsabery AI, Saleh H, Hashim I, Siddheshwar PG (2016) Transient natural convection heat transfer in nanoliquid-saturated porous oblique cavity using thermal non-equilibrium model. Int J Mech Sci 114:233–245 Alsabery AI, Saleh H, Hashim I, Siddheshwar PG (2016) Transient natural convection heat transfer in nanoliquid-saturated porous oblique cavity using thermal non-equilibrium model. Int J Mech Sci 114:233–245
Zurück zum Zitat Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I (2019) Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci 201:247–263 Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I (2019) Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci 201:247–263
Zurück zum Zitat Baytas AC, Pop I (2002) Free convection in a square porous cavity using a thermal nonequilibrium model. Int J Therm Sci 41:861–870 Baytas AC, Pop I (2002) Free convection in a square porous cavity using a thermal nonequilibrium model. Int J Therm Sci 41:861–870
Zurück zum Zitat Bilal S, Rehman KU, Malik MY (2017) Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method. Res Phys 7:690–696 Bilal S, Rehman KU, Malik MY (2017) Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method. Res Phys 7:690–696
Zurück zum Zitat Farshad SA, Sheikholeslami M (2019) Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy 141:246–258 Farshad SA, Sheikholeslami M (2019) Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy 141:246–258
Zurück zum Zitat Fersadou I, Kahalerras H, El Ganaoui M (2015) MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel. Comput Fluids 121:164–179MathSciNetMATH Fersadou I, Kahalerras H, El Ganaoui M (2015) MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel. Comput Fluids 121:164–179MathSciNetMATH
Zurück zum Zitat Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K (2017) Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid. Numer Heat Transf A 72:479–494 Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K (2017) Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid. Numer Heat Transf A 72:479–494
Zurück zum Zitat Hammed H, Haneef M, Shah Z, Islam S, Khan W, Muhammad S (2018) The combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. Appl Sci 8:160. https://doi.org/10.3390/app8020160 CrossRef Hammed H, Haneef M, Shah Z, Islam S, Khan W, Muhammad S (2018) The combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. Appl Sci 8:160. https://​doi.​org/​10.​3390/​app8020160 CrossRef
Zurück zum Zitat Izadi M, Mehryan SAM, Sheremet MA (2018) Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. J Taiwan Inst Chem Eng 88:89–103 Izadi M, Mehryan SAM, Sheremet MA (2018) Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. J Taiwan Inst Chem Eng 88:89–103
Zurück zum Zitat Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfer 46:3639–3653MATH Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfer 46:3639–3653MATH
Zurück zum Zitat Mansour MA, Mohamed RA, Abd-ElAziz MM, Ahmed SE (2010) Natural convection heat and mass transfer in porous triangular enclosures with the effects of thin fin and various thermal and concentration boundary conditions in the presence of heat source. Int J Energy Technol 2(3):1–13 Mansour MA, Mohamed RA, Abd-ElAziz MM, Ahmed SE (2010) Natural convection heat and mass transfer in porous triangular enclosures with the effects of thin fin and various thermal and concentration boundary conditions in the presence of heat source. Int J Energy Technol 2(3):1–13
Zurück zum Zitat Mehryan SAM, Sheremet MA, Soltani M, Izadi M (2019) Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model. J Mol Liq 277:959–970 Mehryan SAM, Sheremet MA, Soltani M, Izadi M (2019) Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model. J Mol Liq 277:959–970
Zurück zum Zitat Ouyang X-L, Jiang P-X, Xu R-N (2013) Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media. Int J Heat Mass Transf 60:31–40 Ouyang X-L, Jiang P-X, Xu R-N (2013) Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media. Int J Heat Mass Transf 60:31–40
Zurück zum Zitat Oztop HF, Al-Salem K, Pop I (2011) Mhd mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf 54:494–3504MATH Oztop HF, Al-Salem K, Pop I (2011) Mhd mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf 54:494–3504MATH
Zurück zum Zitat Pop I, Ingham D (2001) Convective heat transfer: mathematical and computational modeling of viscous fluids and porous media. Pergamon, Oxford Pop I, Ingham D (2001) Convective heat transfer: mathematical and computational modeling of viscous fluids and porous media. Pergamon, Oxford
Zurück zum Zitat Rashid I, Haq RU, Al-Mdallal QM (2017) Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects. Phys E 89:33–42 Rashid I, Haq RU, Al-Mdallal QM (2017) Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects. Phys E 89:33–42
Zurück zum Zitat Rokni HB, Gupta A, Moore JD, McHugh MA, Bamgbaded BA, Gavaises M (2019a) Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. Fuel 236:1377–1390 Rokni HB, Gupta A, Moore JD, McHugh MA, Bamgbaded BA, Gavaises M (2019a) Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. Fuel 236:1377–1390
Zurück zum Zitat Rokni HB, Moore JD, Gupta A, McHugh MA, Gavaises M (2019b) Entropy scaling based viscosity predictions for hydrocarbon mixtures and diesel fuels up to extreme conditions. Fuel 241:1203–1213 Rokni HB, Moore JD, Gupta A, McHugh MA, Gavaises M (2019b) Entropy scaling based viscosity predictions for hydrocarbon mixtures and diesel fuels up to extreme conditions. Fuel 241:1203–1213
Zurück zum Zitat Roy NC, Hossain M, Gorla RSR (2019) Combustible boundary-layer flows along inclined hot surfaces with streamwise surface temperature variations. J Thermophys Heat Transf 33(1):246–253 Roy NC, Hossain M, Gorla RSR (2019) Combustible boundary-layer flows along inclined hot surfaces with streamwise surface temperature variations. J Thermophys Heat Transf 33(1):246–253
Zurück zum Zitat Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084MATH Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084MATH
Zurück zum Zitat Selimefendigil F, Oztop HF (2014) Numerical study of mhd mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int J Heat Mass Transf 78:741–754 Selimefendigil F, Oztop HF (2014) Numerical study of mhd mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int J Heat Mass Transf 78:741–754
Zurück zum Zitat Selimefendigil F, Oztop HF (2015) Influence of inclination angle of magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy generation. Adv Powder Technol 26:1663–1675 Selimefendigil F, Oztop HF (2015) Influence of inclination angle of magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy generation. Adv Powder Technol 26:1663–1675
Zurück zum Zitat Selimefendigil F, Oztop HF (2017) Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field. Int J Heat Mass Transf 108:156–171 Selimefendigil F, Oztop HF (2017) Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field. Int J Heat Mass Transf 108:156–171
Zurück zum Zitat Shah Z, Islam S, Gul T, Bonyah E, Khan MA (2018) The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Res Phys 9:1201–1214 Shah Z, Islam S, Gul T, Bonyah E, Khan MA (2018) The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Res Phys 9:1201–1214
Zurück zum Zitat Sharif MAR, Mohammad TR (2005) Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. Int J Therm Sci 44:865–878 Sharif MAR, Mohammad TR (2005) Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. Int J Therm Sci 44:865–878
Zurück zum Zitat Sheikholeslami M (2018a) Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq 266:495–503 Sheikholeslami M (2018a) Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq 266:495–503
Zurück zum Zitat Sheikholeslami M (2018b) Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl 30(4):1055–1064 Sheikholeslami M (2018b) Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl 30(4):1055–1064
Zurück zum Zitat Sheikholeslami M (2019a) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333MathSciNet Sheikholeslami M (2019a) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333MathSciNet
Zurück zum Zitat Sheikholeslami M (2019b) Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 344:306–318MathSciNet Sheikholeslami M (2019b) Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 344:306–318MathSciNet
Zurück zum Zitat Sheikholeslami M, Mahian O (2019) Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod 215:963–977 Sheikholeslami M, Mahian O (2019) Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod 215:963–977
Zurück zum Zitat Sheikholeslami M, Rokni HB (2017) Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf 115:1203–1233 Sheikholeslami M, Rokni HB (2017) Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf 115:1203–1233
Zurück zum Zitat Sheikholeslami M, Shehzad SA (2018) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271 Sheikholeslami M, Shehzad SA (2018) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271
Zurück zum Zitat Sheikholeslami M, Haq R-u, Shafee A, Li Z, Elaraki YG, Tlili I (2019a) Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf 135:470–478 Sheikholeslami M, Haq R-u, Shafee A, Li Z, Elaraki YG, Tlili I (2019a) Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf 135:470–478
Zurück zum Zitat Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z (2019b) Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod 221:885–898 Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z (2019b) Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod 221:885–898
Zurück zum Zitat Sheikholeslami M, Haq R, Shafee A, Li Z (2019c) Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf 130:1322–1342 Sheikholeslami M, Haq R, Shafee A, Li Z (2019c) Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf 130:1322–1342
Zurück zum Zitat Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M (2019e) Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf 137:1290–1300 Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M (2019e) Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf 137:1290–1300
Zurück zum Zitat Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R (2019f) Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf 136:1233–1240 Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R (2019f) Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf 136:1233–1240
Zurück zum Zitat Sheikholeslami M, Jafaryar M, Shafee A, Li Z (2019g) Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure. Phys A 523:544–556 Sheikholeslami M, Jafaryar M, Shafee A, Li Z (2019g) Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure. Phys A 523:544–556
Zurück zum Zitat Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA (2019h) Variable magnetic forces impact on Magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq 277:388–396 Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA (2019h) Variable magnetic forces impact on Magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq 277:388–396
Zurück zum Zitat Sun F, Yao Y, Li X (2018) The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy 143:995–1005 Sun F, Yao Y, Li X (2018) The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy 143:995–1005
Zurück zum Zitat Vafai K (2010) Porous media: applications in biological Systems and biotechnology. CRC Press, New York Vafai K (2010) Porous media: applications in biological Systems and biotechnology. CRC Press, New York
Zurück zum Zitat Wang G, Qi C, Pan Y, Li C (2018) Experimental study on heat transfer and flow characteristics of two kinds of porous metal foam tubes filled with water. Therm Sci 22(Suppl. 2):S497–S505 Wang G, Qi C, Pan Y, Li C (2018) Experimental study on heat transfer and flow characteristics of two kinds of porous metal foam tubes filled with water. Therm Sci 22(Suppl. 2):S497–S505
Zurück zum Zitat Yadav D, Bhargava R, Agrawal GS, Yadav N, Lee J, Kim MC (2014) Linear and nonlinear analysis of thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluid Nanofluid 16:425–440 Yadav D, Bhargava R, Agrawal GS, Yadav N, Lee J, Kim MC (2014) Linear and nonlinear analysis of thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluid Nanofluid 16:425–440
Metadaten
Titel
Hydrothermal analysis of nanoparticles transportation through a porous compound cavity utilizing two temperature model and radiation heat transfer under the effects of magnetic field
verfasst von
Zhixiong Li
Fatih Selimefendigil
Mohsen Sheikholeslami
Ahmad Shafee
Metib Alghamdi
Publikationsdatum
17.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04504-1

Weitere Artikel der Ausgabe 2/2020

Microsystem Technologies 2/2020 Zur Ausgabe

Neuer Inhalt