Skip to main content
Erschienen in: Journal of Computational Electronics 4/2018

05.09.2018

Impact of channel length, gate insulator thickness, gate insulator material, and temperature on the performance of nanoscale FETs

verfasst von: Jibesh K. Saha, Nitish Chakma, Mehedhi Hasan

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aggressive technology scaling as per Moore’s law has led to elevated power dissipation levels owing to an exponential increase in subthreshold leakage power. Short channel effects (SCEs) due to channel length reduction, gate insulator thickness change, application of high-k gate insulator, and temperature change in a double-gate metal–oxide–semiconductor field-effect transistor (DG MOSFET) and carbon nanotube field-effect transistor (CNTFET) were investigated in this work. Computational simulations were performed to investigate SCEs, viz. the threshold voltage (Vth) roll-off, subthreshold swing (SS), and Ion/Ioff ratio, in the DG MOSFET and CNTFET while reducing the channel length. The CNTFET showed better performance than the DG MOSFET, including near-zero SCEs due to its pure ballistic transport mechanism. We also examined the threshold voltage (Vth), subthreshold swing (SS), and Ion/Ioff ratio of the DG MOSFET and CNTFET with varying gate insulator thickness, gate insulator material, and temperature. Finally, we handpicked almost similar parameters for both the CNTFET and DG MOSFET and carried out performance analysis based on the simulation results. Comparative analysis of the results showed that the CNTFET provides 47.8 times more Ion/Ioff ratio than the DG MOSFET. Its better control over the threshold voltage, near-zero SCEs, high on-current, low leakage power consumption, and ability to operate at high temperature make the CNTFET a viable option for use in enhanced switching applications and low-voltage digital applications in nanoelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kranti, A., Armstrong, G.A.: Optimization of the source/drain extension region profile for suppression of short channel effects in sub-50 nm DG MOSFETs with high-κ gate dielectrics. Semicond. Sci. Technol. 21(12), 1563–1572 (2006)CrossRef Kranti, A., Armstrong, G.A.: Optimization of the source/drain extension region profile for suppression of short channel effects in sub-50 nm DG MOSFETs with high-κ gate dielectrics. Semicond. Sci. Technol. 21(12), 1563–1572 (2006)CrossRef
2.
Zurück zum Zitat Antoniadis, D.A., Aberg, I., Chléirigh, C.N., et al.: Continuous MOSFET performance increase with device scaling: the role of strain and channel material innovations. IBM J. Res. Dev. 50(4/5), 363–376 (2006)CrossRef Antoniadis, D.A., Aberg, I., Chléirigh, C.N., et al.: Continuous MOSFET performance increase with device scaling: the role of strain and channel material innovations. IBM J. Res. Dev. 50(4/5), 363–376 (2006)CrossRef
3.
Zurück zum Zitat Khanna, V.K.: Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, Nanoscience and Technology, pp. 45–100. Springer, New Delhi (2016) Khanna, V.K.: Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, Nanoscience and Technology, pp. 45–100. Springer, New Delhi (2016)
4.
Zurück zum Zitat Liu, H., Neal, A.T., Ye, P.D.: Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012)CrossRef Liu, H., Neal, A.T., Ye, P.D.: Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012)CrossRef
5.
Zurück zum Zitat Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327 (2005)CrossRef Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327 (2005)CrossRef
6.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
7.
Zurück zum Zitat Wong, H.P., et al.: Nanoscale CMOS. Proc. IEEE 87(4), 537–570 (1999)CrossRef Wong, H.P., et al.: Nanoscale CMOS. Proc. IEEE 87(4), 537–570 (1999)CrossRef
9.
Zurück zum Zitat Fossum, J.G., Ge, L., Chiang, M.H.: Speed superiority of scaled double-gate CMOS. IEEE Trans. Electron Devices 45, 808–811 (2002)CrossRef Fossum, J.G., Ge, L., Chiang, M.H.: Speed superiority of scaled double-gate CMOS. IEEE Trans. Electron Devices 45, 808–811 (2002)CrossRef
10.
Zurück zum Zitat Ieong, M., Wong, H.S.P., Nowak, E., Kedzierski, J., Jones, E.C.: High performance double-gate device technology challenges and opportunities. In: Quality Electronic Design, 2002. Proceedings. International Symposium on IEEE, pp. 492–495 (2002) Ieong, M., Wong, H.S.P., Nowak, E., Kedzierski, J., Jones, E.C.: High performance double-gate device technology challenges and opportunities. In: Quality Electronic Design, 2002. Proceedings. International Symposium on IEEE, pp. 492–495 (2002)
11.
Zurück zum Zitat Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)CrossRef Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)CrossRef
12.
Zurück zum Zitat Heinze, S., et al.: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002)CrossRef Heinze, S., et al.: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002)CrossRef
13.
Zurück zum Zitat Appenzeller, J., et al.: Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002)CrossRef Appenzeller, J., et al.: Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002)CrossRef
14.
Zurück zum Zitat Neophytou, N., Ahmed, S., Klimeck, G.: Non-equilibrium Green’s function (NEGF) simulation of metallic carbon nanotubes including vacancy defects. J. Comput. Electron. 6(1–3), 317–320 (2007)CrossRef Neophytou, N., Ahmed, S., Klimeck, G.: Non-equilibrium Green’s function (NEGF) simulation of metallic carbon nanotubes including vacancy defects. J. Comput. Electron. 6(1–3), 317–320 (2007)CrossRef
15.
Zurück zum Zitat Zabeli, M., Caka, N., Limani, M., Kabashi, Q.: The threshold voltage of MOSFET and its influence on digital circuits. In: Recent Advances in Systems, Communications & Computers, 6 − 8 Apr 2008 Zabeli, M., Caka, N., Limani, M., Kabashi, Q.: The threshold voltage of MOSFET and its influence on digital circuits. In: Recent Advances in Systems, Communications & Computers, 6 − 8 Apr 2008
16.
Zurück zum Zitat Kim, Y.B., Kim, Y.-B., Lombardi, F.: A novel design methodology to optimize the speed and power of the CNTFET circuits. In: 52nd IEEE International Midwest Symposium on Circuits and Systems, MWSCAS’09, pp. 1130–1133 (2009) Kim, Y.B., Kim, Y.-B., Lombardi, F.: A novel design methodology to optimize the speed and power of the CNTFET circuits. In: 52nd IEEE International Midwest Symposium on Circuits and Systems, MWSCAS’09, pp. 1130–1133 (2009)
17.
Zurück zum Zitat Chen, Q., Agrawal, B., Meindl, J.: A comprehensive analytical subthreshold swing (S) model for double-gate MOSFETs. IEEE Trans. Electron Devices 49(6), 1086–1090 (2002)CrossRef Chen, Q., Agrawal, B., Meindl, J.: A comprehensive analytical subthreshold swing (S) model for double-gate MOSFETs. IEEE Trans. Electron Devices 49(6), 1086–1090 (2002)CrossRef
18.
Zurück zum Zitat Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, London (2006)CrossRef Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, London (2006)CrossRef
19.
Zurück zum Zitat Geier, M.L., McMorrow, J.J., Xu, W., Zhu, J., Kim, C.H., Marks, T.J., Hersam, M.C.: Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10(11), 944 (2015)CrossRef Geier, M.L., McMorrow, J.J., Xu, W., Zhu, J., Kim, C.H., Marks, T.J., Hersam, M.C.: Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10(11), 944 (2015)CrossRef
20.
Zurück zum Zitat Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1864 (2003)CrossRef Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1864 (2003)CrossRef
22.
Zurück zum Zitat Buchanan, D.A.: Scaling the gate dielectric: materials, integration, and reliability. IBM J. Res. Dev. 43(3), 245–264 (1999)CrossRef Buchanan, D.A.: Scaling the gate dielectric: materials, integration, and reliability. IBM J. Res. Dev. 43(3), 245–264 (1999)CrossRef
23.
Zurück zum Zitat Thompson, S.: MOS scaling: transistor challenges for the 21st century. Intel Technol. J. 398, 1–9 (1998) Thompson, S.: MOS scaling: transistor challenges for the 21st century. Intel Technol. J. 398, 1–9 (1998)
24.
Zurück zum Zitat Locquet, J.P., Marchiori, C., Sousa, M., Fompeyrine, J., Seo, J.W.: High-K dielectrics for the gate stack. J. Appl. Phys. 100(5), 051610 (2006)CrossRef Locquet, J.P., Marchiori, C., Sousa, M., Fompeyrine, J., Seo, J.W.: High-K dielectrics for the gate stack. J. Appl. Phys. 100(5), 051610 (2006)CrossRef
25.
Zurück zum Zitat Claasen, T.A.: An industry perspective on current and future state of the art in system-on-chip (SoC) technology. Proc. IEEE 94(6), 1121–1137 (2006)CrossRef Claasen, T.A.: An industry perspective on current and future state of the art in system-on-chip (SoC) technology. Proc. IEEE 94(6), 1121–1137 (2006)CrossRef
26.
Zurück zum Zitat Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001)CrossRef Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001)CrossRef
27.
Zurück zum Zitat Appenzeller, J.: Carbon nanotubes for high-performance electronics—progress and prospect. Proc. IEEE 96(2), 201–211 (2008)CrossRef Appenzeller, J.: Carbon nanotubes for high-performance electronics—progress and prospect. Proc. IEEE 96(2), 201–211 (2008)CrossRef
28.
Zurück zum Zitat Sinha, S.K., Chaudhury, S.: Analysis of different parameters of channel material and temperature on threshold voltage of CNTFET. Mater. Sci. Semicond. Process. 31, 431–438 (2015)CrossRef Sinha, S.K., Chaudhury, S.: Analysis of different parameters of channel material and temperature on threshold voltage of CNTFET. Mater. Sci. Semicond. Process. 31, 431–438 (2015)CrossRef
Metadaten
Titel
Impact of channel length, gate insulator thickness, gate insulator material, and temperature on the performance of nanoscale FETs
verfasst von
Jibesh K. Saha
Nitish Chakma
Mehedhi Hasan
Publikationsdatum
05.09.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1235-4

Weitere Artikel der Ausgabe 4/2018

Journal of Computational Electronics 4/2018 Zur Ausgabe

Neuer Inhalt