Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2021

11.01.2021

Improved Fracture Toughness and Crack Arrest Ability of Graphene–Alumina Nanocomposite

verfasst von: V. R. Akhil Raj, Komalakrushna Hadagalli, Premanshu Jana, Saumen Mandal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, high fracture toughness graphene–alumina composite was developed through a novel chemical method using boehmite and graphene, which is followed by extrusion and consolidation. The mixed precursors were consolidated by sintering at 1550 °C in a nitrogen atmosphere. The plate-like structures of boehmite form α-alumina; meanwhile, graphene particles at the grain boundaries hinder the growth of alumina grains. The graphene reinforcement was bonded to α-alumina matrix by van der Waals forces. The XRD pattern reveals the presence of graphene with a plane (002) along with α-alumina. Properties such as fracture toughness (5.6 ± 0.01 MPa m0.5), Vickers hardness (1872 ± 25 kgf/mm2) and true density (3.8 g/cm3) were achieved in 0.5 wt.% graphene–alumina composite when compared to α-alumina with fracture toughness (5.3 ± 0.1 MPa m0.5), Vickers hardness (1984 ± 28 kgf/mm2) and true density (3.91 g/cm3). The bridging and deviation of cracks in 0.5 wt.% graphene–alumina composite are attributed to the anchoring and dissipation of energy during crack growth, which enhances the fracture toughness, whereas α-alumina exhibits failure caused by linear crack propagation. Meanwhile, the slight decrease in Vickers hardness and true density of 0.5 wt.% graphene–alumina composite is due to the tribological and low-density properties of graphene. The obtained properties of composite could be suitable in high-temperature, wear-resistant applications such as crucibles, bearings, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat E. Dorre and H. Hubner, Alumina: Processing, Properties and Applications, Springer, New York, 1984, p 329CrossRef E. Dorre and H. Hubner, Alumina: Processing, Properties and Applications, Springer, New York, 1984, p 329CrossRef
2.
Zurück zum Zitat K.S. Novoselov, V. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRef K.S. Novoselov, V. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRef
3.
Zurück zum Zitat I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, and P.L. McEuen, Mechanical Properties of Suspended Graphene Sheets, J. Vac. Sci. Technol., 2007, B25, p 2558–2561CrossRef I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, and P.L. McEuen, Mechanical Properties of Suspended Graphene Sheets, J. Vac. Sci. Technol., 2007, B25, p 2558–2561CrossRef
4.
Zurück zum Zitat M. Mujahid, M.I. Qureshi, M. Islam, and A.A. Khan, Processing and Microstructure of Alumina-Based Composites, J. Mater. Eng. Perform., 1999, 8, p 496–500CrossRef M. Mujahid, M.I. Qureshi, M. Islam, and A.A. Khan, Processing and Microstructure of Alumina-Based Composites, J. Mater. Eng. Perform., 1999, 8, p 496–500CrossRef
5.
Zurück zum Zitat Y.F. Chen, J.Q. Bi, C.L. Yin, and G.L. You, Microstructure and Fracture Toughness of Graphene Nanosheets/Alumina Composites, Ceram. Int., 2014, 40, p 13883–13889CrossRef Y.F. Chen, J.Q. Bi, C.L. Yin, and G.L. You, Microstructure and Fracture Toughness of Graphene Nanosheets/Alumina Composites, Ceram. Int., 2014, 40, p 13883–13889CrossRef
6.
Zurück zum Zitat C.F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernández, B. Alonso, V.G. Rocha, R. Torrecillas, A. Zurutuza, and J. Bartolome, Wear Behavior of Graphene/Alumina Composite, Ceram. Int., 2015, 41, p 7434–7438CrossRef C.F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernández, B. Alonso, V.G. Rocha, R. Torrecillas, A. Zurutuza, and J. Bartolome, Wear Behavior of Graphene/Alumina Composite, Ceram. Int., 2015, 41, p 7434–7438CrossRef
7.
Zurück zum Zitat B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere, and A. Rizzo, Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced Via Spark Plasma Sintering, J. Mater. Eng. Perform., 2017, 26, p 2928–2936CrossRef B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere, and A. Rizzo, Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced Via Spark Plasma Sintering, J. Mater. Eng. Perform., 2017, 26, p 2928–2936CrossRef
8.
Zurück zum Zitat R. Kumar, A.K. Chaubey, S. Bathula, K.G. Prashanth, and A. Dhar, Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties, J. Mater. Eng. Perform., 2018, 27, p 997–1004CrossRef R. Kumar, A.K. Chaubey, S. Bathula, K.G. Prashanth, and A. Dhar, Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties, J. Mater. Eng. Perform., 2018, 27, p 997–1004CrossRef
9.
Zurück zum Zitat A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, and A. Zurutuza, Graphene for Tough and Electroconductive Alumina Ceramics, J. Eur. Ceram. Soc., 2013, 33, p 3201–3210CrossRef A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, and A. Zurutuza, Graphene for Tough and Electroconductive Alumina Ceramics, J. Eur. Ceram. Soc., 2013, 33, p 3201–3210CrossRef
10.
Zurück zum Zitat J. Liu, Y. Yang, H. Hassanin, N. Jumbu, S. Deng, Q. Zuo, and K. Jiang, Graphene-Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications, ACS Appl. Mater. Inter., 2016, 8, p 2607–2616CrossRef J. Liu, Y. Yang, H. Hassanin, N. Jumbu, S. Deng, Q. Zuo, and K. Jiang, Graphene-Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications, ACS Appl. Mater. Inter., 2016, 8, p 2607–2616CrossRef
11.
Zurück zum Zitat T. Cygan, J. Wozniak, M. Kostecki, M. Petrus, A. Jastrzębska, W. Ziemkowska, and A. Olszyna, Mechanical Properties of Graphene Oxide Reinforced Alumina Matrix Composites, Ceram. Int., 2017, 43, p 6180–6186CrossRef T. Cygan, J. Wozniak, M. Kostecki, M. Petrus, A. Jastrzębska, W. Ziemkowska, and A. Olszyna, Mechanical Properties of Graphene Oxide Reinforced Alumina Matrix Composites, Ceram. Int., 2017, 43, p 6180–6186CrossRef
12.
Zurück zum Zitat H.J. Kim, S.M. Lee, Y.S. Oh, Y.H. Yang, Y.S. Lim, D.H. Yoon, C. Lee, J.Y. Kim, and R.S. Ruoff, Unoxidized Graphene/Alumina Nanocomposite: Fracture-and Wear-Resistance Effects of Graphene on Alumina Matrix, Sci. Rep., 2014, 4, p 1–10 H.J. Kim, S.M. Lee, Y.S. Oh, Y.H. Yang, Y.S. Lim, D.H. Yoon, C. Lee, J.Y. Kim, and R.S. Ruoff, Unoxidized Graphene/Alumina Nanocomposite: Fracture-and Wear-Resistance Effects of Graphene on Alumina Matrix, Sci. Rep., 2014, 4, p 1–10
13.
Zurück zum Zitat K. Wang, Y. Wang, Z. Fan, J. Yan, and T. Wei, Preparation of Graphene Nanosheet/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318CrossRef K. Wang, Y. Wang, Z. Fan, J. Yan, and T. Wei, Preparation of Graphene Nanosheet/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318CrossRef
14.
Zurück zum Zitat E. Klyatskina, A. Borrell, E. Grigoriev, A. Zholnin, M. Salvador, and V. Stolyarov, Structure Features and Properties of Graphene/Al2O3 Composite, J. Ceram. Sci. Technol., 2018, 9, p 215–224 E. Klyatskina, A. Borrell, E. Grigoriev, A. Zholnin, M. Salvador, and V. Stolyarov, Structure Features and Properties of Graphene/Al2O3 Composite, J. Ceram. Sci. Technol., 2018, 9, p 215–224
15.
Zurück zum Zitat C. Rao, K. Subrahmanyam, H.R. Matte, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh, and D.J. Late, A Study of the Synthetic Methods and Properties of Graphenes, Sci. Technol. Adv. Mater., 2010, 11, p 1–15CrossRef C. Rao, K. Subrahmanyam, H.R. Matte, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh, and D.J. Late, A Study of the Synthetic Methods and Properties of Graphenes, Sci. Technol. Adv. Mater., 2010, 11, p 1–15CrossRef
16.
Zurück zum Zitat Y. Yan, Z. Huang, S. Dong, and D. Jiang, Pressureless Sintering of High-Density ZrB2-SiC Ceramic Composites, J. Am. Cream, 2006, 89(11), p 3589–3592CrossRef Y. Yan, Z. Huang, S. Dong, and D. Jiang, Pressureless Sintering of High-Density ZrB2-SiC Ceramic Composites, J. Am. Cream, 2006, 89(11), p 3589–3592CrossRef
17.
Zurück zum Zitat H. Zawati, F.I. Nur, and A.B. Nur, Effect of MgO additive on microstructure of Al2O3, Adv. Mater. Res., 2012, 488, p 335–339 H. Zawati, F.I. Nur, and A.B. Nur, Effect of MgO additive on microstructure of Al2O3, Adv. Mater. Res., 2012, 488, p 335–339
18.
Zurück zum Zitat Y. Liu, D. Ma, X. Han, X. Bao, W. Frandsen, D. Wang, and D. Su, Hydrothermal Synthesis of Microscale Boehmite and Gamma Nanoleaves Alumina, Mater. Lett., 2008, 62, p 1297–1301CrossRef Y. Liu, D. Ma, X. Han, X. Bao, W. Frandsen, D. Wang, and D. Su, Hydrothermal Synthesis of Microscale Boehmite and Gamma Nanoleaves Alumina, Mater. Lett., 2008, 62, p 1297–1301CrossRef
19.
Zurück zum Zitat A.K. Karamalidis and D.A. Dzombak, Surface Complexation Modeling: Gibbsite, Wiley, New York, 2011 A.K. Karamalidis and D.A. Dzombak, Surface Complexation Modeling: Gibbsite, Wiley, New York, 2011
20.
Zurück zum Zitat X. Shang, W. Lu, B. Yue, L. Zhang, J. Ni, Y. lv, and Y. Feng, Synthesis of Three-Dimensional Hierarchical Dendrites of NdOHCO3 Via a Facile Hydrothermal Method, Cryst. Growth Des., 2009, 9, p 1415–1420CrossRef X. Shang, W. Lu, B. Yue, L. Zhang, J. Ni, Y. lv, and Y. Feng, Synthesis of Three-Dimensional Hierarchical Dendrites of NdOHCO3 Via a Facile Hydrothermal Method, Cryst. Growth Des., 2009, 9, p 1415–1420CrossRef
21.
Zurück zum Zitat P.D.S. Santos, A.C.V. Coelho, H.D.S. Santos, and P.K. Kiyohara, Hydrothermal Synthesis of Well-Crystallised Boehmite Crystals of Various Shapes, Mater. Res., 2009, 12, p 437–445CrossRef P.D.S. Santos, A.C.V. Coelho, H.D.S. Santos, and P.K. Kiyohara, Hydrothermal Synthesis of Well-Crystallised Boehmite Crystals of Various Shapes, Mater. Res., 2009, 12, p 437–445CrossRef
22.
Zurück zum Zitat L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, A Green, Rapid and Size-Controlled Production of High-Quality Graphene Sheets by Hydrodynamic Forces, RSC Adv., 2014, 4, p 36464–36470CrossRef L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, A Green, Rapid and Size-Controlled Production of High-Quality Graphene Sheets by Hydrodynamic Forces, RSC Adv., 2014, 4, p 36464–36470CrossRef
23.
Zurück zum Zitat Z. Zhang, H. Jin, C. Wu, and J. Ji, Efficient Production of High-Quality Few-Layer Graphene Using a Simple Hydrodynamic-Assisted Exfoliation Method, Nanoscale Res. Lett., 2018, 13, p 1–8CrossRef Z. Zhang, H. Jin, C. Wu, and J. Ji, Efficient Production of High-Quality Few-Layer Graphene Using a Simple Hydrodynamic-Assisted Exfoliation Method, Nanoscale Res. Lett., 2018, 13, p 1–8CrossRef
24.
Zurück zum Zitat F. Del Río, M.G. Boado, A. Rama, and F. Guitián, A Comparative Study on Different Aqueous-Phase Graphite Exfoliation Methods for Few-Layer Graphene Production and Its Application in Alumina Matrix Composites, J. Eur. Ceram. Soc., 2017, 37, p 3681–3693CrossRef F. Del Río, M.G. Boado, A. Rama, and F. Guitián, A Comparative Study on Different Aqueous-Phase Graphite Exfoliation Methods for Few-Layer Graphene Production and Its Application in Alumina Matrix Composites, J. Eur. Ceram. Soc., 2017, 37, p 3681–3693CrossRef
25.
Zurück zum Zitat Y.Y. Lim and M.M. Chaudhri, The Influence of Grain Size on the Indentation Hardness of High-Purity Copper and Aluminium, Philos. Mag. A, 2002, 82, p 2071–2080CrossRef Y.Y. Lim and M.M. Chaudhri, The Influence of Grain Size on the Indentation Hardness of High-Purity Copper and Aluminium, Philos. Mag. A, 2002, 82, p 2071–2080CrossRef
26.
Zurück zum Zitat Q. Tang and J. Gong, Effect of Porosity on the Micro Hardness Testing of Brittle Ceramics: A Case Study on the System of NiO-ZrO2, Ceram. Inter., 2013, 39, p 8751–8759CrossRef Q. Tang and J. Gong, Effect of Porosity on the Micro Hardness Testing of Brittle Ceramics: A Case Study on the System of NiO-ZrO2, Ceram. Inter., 2013, 39, p 8751–8759CrossRef
27.
Zurück zum Zitat W.L. Li and J.C.M. Li, The Effect of Grain Size on Fracture Toughness, Philos. Mag. A, 1989, 59, p 1245–1261CrossRef W.L. Li and J.C.M. Li, The Effect of Grain Size on Fracture Toughness, Philos. Mag. A, 1989, 59, p 1245–1261CrossRef
28.
Zurück zum Zitat Z. Balak, M.S. Asl, M. Azizieh, H. Kafashan, and R. Hayati, Effect of Different Additives and Open Porosity on Fracture Toughness of ZrB2-SiC-Based Composites Prepared by SPS, Ceram. Inter., 2017, 43, p 2209–2220CrossRef Z. Balak, M.S. Asl, M. Azizieh, H. Kafashan, and R. Hayati, Effect of Different Additives and Open Porosity on Fracture Toughness of ZrB2-SiC-Based Composites Prepared by SPS, Ceram. Inter., 2017, 43, p 2209–2220CrossRef
29.
Zurück zum Zitat G.D. Quinn, Fracture toughness of ceramics by the Vickers Indentation Crack Length Method: A Critical Review, Ceram. Eng. Sci. Proc., 2007, 27, p 45–62CrossRef G.D. Quinn, Fracture toughness of ceramics by the Vickers Indentation Crack Length Method: A Critical Review, Ceram. Eng. Sci. Proc., 2007, 27, p 45–62CrossRef
30.
Zurück zum Zitat A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, Determination of Fracture Toughness Using the Area of Micro-crack Tracks Left in Brittle Materials by Vickers Indentation Test, J. Adv. Ceram., 2013, 2, p 87–102CrossRef A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, Determination of Fracture Toughness Using the Area of Micro-crack Tracks Left in Brittle Materials by Vickers Indentation Test, J. Adv. Ceram., 2013, 2, p 87–102CrossRef
31.
Zurück zum Zitat I. Ahmad, T. Subhani, N. Wang, and Y. Zhu, Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites, J. Mater. Eng. Perform., 2018, 27, p 2949–2959CrossRef I. Ahmad, T. Subhani, N. Wang, and Y. Zhu, Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites, J. Mater. Eng. Perform., 2018, 27, p 2949–2959CrossRef
32.
Zurück zum Zitat Y. Fan, M. Estili, G. Igarashi, W. Jiang, and A. Kawasaki, The effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nano Composites, J. Eur. Cream. Soc., 2014, 34, p 443–451CrossRef Y. Fan, M. Estili, G. Igarashi, W. Jiang, and A. Kawasaki, The effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nano Composites, J. Eur. Cream. Soc., 2014, 34, p 443–451CrossRef
33.
Zurück zum Zitat M. Suárez, A. Fernandez, J.L. Menendez, R. Torrecillas, H.U. Kessel, J. Hennicke, and T. Kessel, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, Sintering applications, 2013, 13, p 319–342 M. Suárez, A. Fernandez, J.L. Menendez, R. Torrecillas, H.U. Kessel, J. Hennicke, and T. Kessel, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, Sintering applications, 2013, 13, p 319–342
Metadaten
Titel
Improved Fracture Toughness and Crack Arrest Ability of Graphene–Alumina Nanocomposite
verfasst von
V. R. Akhil Raj
Komalakrushna Hadagalli
Premanshu Jana
Saumen Mandal
Publikationsdatum
11.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05433-1

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Engineering and Performance 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.