Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2018

10.08.2018

Investigation on Microstructural Evolutions and Mechanical Properties of P92 Steel During Thermal Processing

verfasst von: Jichao Wang, Pulin Nie, Shangfei Qiao, O. A. Ojo, Chengwu Yao, Zhuguo Li, Jian Huang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evolution of the microstructure of P92 steel during heat processing has a significant effect on the final performance of steel products and is thus an area of critical interest. Accordingly, the grain growth behavior of austenite and δ-ferrite changes in P92 steel is comprehensively investigated in this study through thermodynamic calculations and physical simulation. The results show that the AC1, AC3 and γδ transformation temperatures of P92 steel are 841 °C, 878 °C and 1095 °C, respectively, which are comparable to the measured values of 850 °C, 879 °C and 1175 °C, respectively. When the temperature exceeds the AC1 temperature, the austenite grain size increases with increasing temperature and longer holding times, and the growth rate of austenite grains increases with higher temperatures but decreases with holding time at a certain temperature. A model that shows the austenite grain growth kinetics is established: Dn − D 0 n  =  2.03 × 1016exp(− 498,770/RT)t, in which the time exponent n decreases from 4.52 to 2.11 with an increase in temperature from 1000 °C to 1200 °C due to the reduced pinning effect resultant of the dissolution of precipitates, M23C6, VX and NbX at 887 °C, 1073 °C and 1200 °C, respectively. The formation of δ-ferrite at 1200 °C when held for 600 s and 1300 °C when held for 60 ~ 600 s causes a smaller austenite grain size. The relationship between the evolution of the microstructure of P92 steel and the mechanical properties is also studied. The results show that the prior austenite grain size has an inverse relationship with impact energy and ultimate tensile strength at 620 °C, while the presence of soft δ-ferrite leads to a reduction in the microhardness, impact energy and ultimate tensile strength at 620 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Chatterjee, A. Dutta, M.B. Sk, R. Mitra, A.K. Bhaduri, and D. Chakrabarti, Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel, Metall. Mater. Trans. A, 2017, 48, p 2410–2424CrossRef A. Chatterjee, A. Dutta, M.B. Sk, R. Mitra, A.K. Bhaduri, and D. Chakrabarti, Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel, Metall. Mater. Trans. A, 2017, 48, p 2410–2424CrossRef
2.
Zurück zum Zitat T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr-1.8 W-0.5Mo-VNb (ASME Grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRef T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr-1.8 W-0.5Mo-VNb (ASME Grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRef
3.
Zurück zum Zitat X. Xu, G.D. West, J.A. Siefert, J.D. Parker, and R.C. Thomson, The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel, Metall. Mater. Trans. A, 2017, 48, p 5396–5414CrossRef X. Xu, G.D. West, J.A. Siefert, J.D. Parker, and R.C. Thomson, The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel, Metall. Mater. Trans. A, 2017, 48, p 5396–5414CrossRef
4.
Zurück zum Zitat S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, and T.Q. Liu, The Growth Behavior of Austenite Grain in the Heating Process of 300 M Steel, Mater. Sci. Eng. A, 2011, 528, p 4967–4972CrossRef S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, and T.Q. Liu, The Growth Behavior of Austenite Grain in the Heating Process of 300 M Steel, Mater. Sci. Eng. A, 2011, 528, p 4967–4972CrossRef
5.
Zurück zum Zitat Y.K. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessel. Pip., 2009, 86, p 585–592CrossRef Y.K. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessel. Pip., 2009, 86, p 585–592CrossRef
6.
Zurück zum Zitat F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane, Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels, Int. J. Press. Vessel. Pip., 2010, 87, p 598–604CrossRef F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane, Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels, Int. J. Press. Vessel. Pip., 2010, 87, p 598–604CrossRef
7.
Zurück zum Zitat B.A. Shassere, Y. Yamamoto, and S.S. Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing, Metall. Mater. Trans. A, 2016, 47, p 2188–2200CrossRef B.A. Shassere, Y. Yamamoto, and S.S. Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing, Metall. Mater. Trans. A, 2016, 47, p 2188–2200CrossRef
8.
Zurück zum Zitat R. Kishore, R.N. Singh, T.K. Sinha, and B.P. Kashyap, The Morphology and Ageing Behaviour of δ-Ferrite in a Modified 9Cr-1Mo Steel, J. Nucl. Mater., 1992, 195, p 198–204CrossRef R. Kishore, R.N. Singh, T.K. Sinha, and B.P. Kashyap, The Morphology and Ageing Behaviour of δ-Ferrite in a Modified 9Cr-1Mo Steel, J. Nucl. Mater., 1992, 195, p 198–204CrossRef
9.
Zurück zum Zitat K.S. Chandravathi, K. Laha, K.B.S. Rao, and S.L. Mannan, Microstructure and Tensile Properties of Modified 9Cr-1Mo Steel (Grade 91), Mater. Sci. Technol., 2001, 17, p 559–565CrossRef K.S. Chandravathi, K. Laha, K.B.S. Rao, and S.L. Mannan, Microstructure and Tensile Properties of Modified 9Cr-1Mo Steel (Grade 91), Mater. Sci. Technol., 2001, 17, p 559–565CrossRef
10.
Zurück zum Zitat B.S. Rho, H.U. Hong, and S.W. Nam, The Fatigue Crack Initiation at the Interface Between Matrix and δ-Ferrite in 304L Stainless Steel, Scr. Mater., 1998, 39, p 1407–1412CrossRef B.S. Rho, H.U. Hong, and S.W. Nam, The Fatigue Crack Initiation at the Interface Between Matrix and δ-Ferrite in 304L Stainless Steel, Scr. Mater., 1998, 39, p 1407–1412CrossRef
11.
Zurück zum Zitat Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Prediction Model for the Austenite Grain Growth in a Hot Rolled Dual Phase Steel, Mater. Des., 2012, 36, p 275–278CrossRef Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Prediction Model for the Austenite Grain Growth in a Hot Rolled Dual Phase Steel, Mater. Des., 2012, 36, p 275–278CrossRef
12.
Zurück zum Zitat S. Illescas, J. Fernández, and J.M. Guilemany, Kinetic Analysis of the Austenitic Grain Growth in HSLA Steel with a Low Carbon Content, Mater. Lett., 2008, 62, p 3478–3480CrossRef S. Illescas, J. Fernández, and J.M. Guilemany, Kinetic Analysis of the Austenitic Grain Growth in HSLA Steel with a Low Carbon Content, Mater. Lett., 2008, 62, p 3478–3480CrossRef
13.
Zurück zum Zitat R.M. Miranda and M.A. Fortes, Austenite Grain Growth, Microstructure and Hardness in the Heat-Affected Zone of a 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 1989, A108, p 1–8CrossRef R.M. Miranda and M.A. Fortes, Austenite Grain Growth, Microstructure and Hardness in the Heat-Affected Zone of a 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 1989, A108, p 1–8CrossRef
14.
Zurück zum Zitat M. Shome, O.P. Gupta, and O.N. Mohanty, A Modified Analytical Approach for Modelling Grain Growth in the Coarse Grain HAZ of HSLA Steels, Scr. Mater., 2004, 50, p 1007–1010CrossRef M. Shome, O.P. Gupta, and O.N. Mohanty, A Modified Analytical Approach for Modelling Grain Growth in the Coarse Grain HAZ of HSLA Steels, Scr. Mater., 2004, 50, p 1007–1010CrossRef
15.
Zurück zum Zitat M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole, In Situ Measurement and Modelling of Austenite Grain Growth in a Ti/Nb Microalloyed Steel, Acta Mater., 2012, 60, p 1015–1026CrossRef M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole, In Situ Measurement and Modelling of Austenite Grain Growth in a Ti/Nb Microalloyed Steel, Acta Mater., 2012, 60, p 1015–1026CrossRef
16.
Zurück zum Zitat C.X. Yue, L.W. Zhang, S.L. Liao, and H.J. Gao, Kinetic Analysis of the Austenite Grain Growth in GCr15 Steel, J. Mater. Eng. Perform., 2010, 19, p 112–115CrossRef C.X. Yue, L.W. Zhang, S.L. Liao, and H.J. Gao, Kinetic Analysis of the Austenite Grain Growth in GCr15 Steel, J. Mater. Eng. Perform., 2010, 19, p 112–115CrossRef
17.
Zurück zum Zitat S.J. Lee and Y.K. Lee, Prediction of Austenite Grain Growth during Austenitization of Low Alloy Steels, Mater. Des., 2008, 29, p 1840–1844CrossRef S.J. Lee and Y.K. Lee, Prediction of Austenite Grain Growth during Austenitization of Low Alloy Steels, Mater. Des., 2008, 29, p 1840–1844CrossRef
18.
Zurück zum Zitat H. Jamshidi Aval, S. Serajzadeh, and A.H. Kokabi, Prediction of Grain Growth Behavior in HAZ During Gas Tungsten Arc Welding of 304 Stainless Steel, J. Mater. Eng. Perform., 2009, 18, p 1193–1200CrossRef H. Jamshidi Aval, S. Serajzadeh, and A.H. Kokabi, Prediction of Grain Growth Behavior in HAZ During Gas Tungsten Arc Welding of 304 Stainless Steel, J. Mater. Eng. Perform., 2009, 18, p 1193–1200CrossRef
19.
Zurück zum Zitat S.Z. Li, Z. Eliniyaz, L.T. Zhang, F. Sun, Y.Z. Shen, and A.D. Shan, Microstructural Evolution of Delta Ferrite in SAVE12 Steel Under Heat Treatment and Short-Term Creep, Mater. Charact., 2012, 73, p 144–152CrossRef S.Z. Li, Z. Eliniyaz, L.T. Zhang, F. Sun, Y.Z. Shen, and A.D. Shan, Microstructural Evolution of Delta Ferrite in SAVE12 Steel Under Heat Treatment and Short-Term Creep, Mater. Charact., 2012, 73, p 144–152CrossRef
20.
Zurück zum Zitat ASTM Standard E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2014, p 1–28 ASTM Standard E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2014, p 1–28
21.
Zurück zum Zitat B. Jeya Ganesh, S. Raju, A.K. Rai, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, and B. Raj, Differential Scanning Calorimetry Study of Diffusional and Martensitic Phase Transformations in Some 9 wt.% Cr Low Carbon Ferritic Steels, Mater. Sci. Technol., 2011, 27, p 500–512CrossRef B. Jeya Ganesh, S. Raju, A.K. Rai, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, and B. Raj, Differential Scanning Calorimetry Study of Diffusional and Martensitic Phase Transformations in Some 9 wt.% Cr Low Carbon Ferritic Steels, Mater. Sci. Technol., 2011, 27, p 500–512CrossRef
22.
Zurück zum Zitat X.Q. Hu, N.M. Xiao, X.H. Luo, and D.Z. Li, Transformation Behavior of Precipitates in a W-Alloyed 10 wt pct Cr Steel for Ultra-supercritical Power Plants, J. Mater. Sci. Technol., 2010, 26, p 817–822CrossRef X.Q. Hu, N.M. Xiao, X.H. Luo, and D.Z. Li, Transformation Behavior of Precipitates in a W-Alloyed 10 wt pct Cr Steel for Ultra-supercritical Power Plants, J. Mater. Sci. Technol., 2010, 26, p 817–822CrossRef
23.
Zurück zum Zitat I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in an Advanced 9 Pct Cr Martensitic Steel During Creep at 923 K (650 °C), Metall. Mater. Trans. A, 2013, 44A, p S128–S135CrossRef I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in an Advanced 9 Pct Cr Martensitic Steel During Creep at 923 K (650 °C), Metall. Mater. Trans. A, 2013, 44A, p S128–S135CrossRef
24.
Zurück zum Zitat Q.Z. Gao, C. Wang, F. Qu, Y.L. Wang, and Z.X. Qiao, Martensite Transformation Kinetics in 9Cr-1.7W-0.4Mo-Co Ferritic Steel, J. Alloys Compd., 2014, 610, p 322–330CrossRef Q.Z. Gao, C. Wang, F. Qu, Y.L. Wang, and Z.X. Qiao, Martensite Transformation Kinetics in 9Cr-1.7W-0.4Mo-Co Ferritic Steel, J. Alloys Compd., 2014, 610, p 322–330CrossRef
25.
Zurück zum Zitat H.R. Wang and W. Wang, Simple Model for Austenite Grain Growth in Microalloyed Steels, Mater. Sci. Technol., 2008, 24, p 228–232CrossRef H.R. Wang and W. Wang, Simple Model for Austenite Grain Growth in Microalloyed Steels, Mater. Sci. Technol., 2008, 24, p 228–232CrossRef
26.
Zurück zum Zitat C.S. Smith, Grain Shapes and Other Metallurgical Applications of Topology, Metallogr. Microstruct. Anal., 2015, 4, p 543–567CrossRef C.S. Smith, Grain Shapes and Other Metallurgical Applications of Topology, Metallogr. Microstruct. Anal., 2015, 4, p 543–567CrossRef
27.
Zurück zum Zitat J. Moon, J. Lee, and C. Lee, Prediction for the Austenite Grain Size in the Presence of Growing Particles in the Weld HAZ of Ti-Microalloyed Steel, Mater. Sci. Eng. A, 2007, 459, p 40–46CrossRef J. Moon, J. Lee, and C. Lee, Prediction for the Austenite Grain Size in the Presence of Growing Particles in the Weld HAZ of Ti-Microalloyed Steel, Mater. Sci. Eng. A, 2007, 459, p 40–46CrossRef
28.
Zurück zum Zitat S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan, Influence of Solution Treatment on the Microstructure of a 9wt.%Cr-1wt.%Mo-0.07wt.%C Steel, Mater. Sci. Eng. A, 1992, A154, p 59–67CrossRef S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan, Influence of Solution Treatment on the Microstructure of a 9wt.%Cr-1wt.%Mo-0.07wt.%C Steel, Mater. Sci. Eng. A, 1992, A154, p 59–67CrossRef
29.
Zurück zum Zitat K. Laha, K.S. Chandravathi, K.B.S. Rao, and S.L. Mannan, Hot Tensile Properties of Simulated Heat-Affected Zone Microstructures of 9Cr1Mo Weldment, Int. J. Press. Vessel. Pip., 1995, 62, p 303–311CrossRef K. Laha, K.S. Chandravathi, K.B.S. Rao, and S.L. Mannan, Hot Tensile Properties of Simulated Heat-Affected Zone Microstructures of 9Cr1Mo Weldment, Int. J. Press. Vessel. Pip., 1995, 62, p 303–311CrossRef
30.
Zurück zum Zitat P.A. Beck, J.C. Kremer, and L. Demer, Grain Growth in High Purity Aluminum, Phys. Rev., 1947, 71, p 555CrossRef P.A. Beck, J.C. Kremer, and L. Demer, Grain Growth in High Purity Aluminum, Phys. Rev., 1947, 71, p 555CrossRef
31.
Zurück zum Zitat S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction Model for the Austenite Grain Size in the Coarse Grained Heat Affected Zone of Fe-C-Mn Steels: Considering the Effect of Initial Grain Size on Isothermal Growth Behavior, ISIJ Int., 2004, 44, p 1230–1237CrossRef S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction Model for the Austenite Grain Size in the Coarse Grained Heat Affected Zone of Fe-C-Mn Steels: Considering the Effect of Initial Grain Size on Isothermal Growth Behavior, ISIJ Int., 2004, 44, p 1230–1237CrossRef
32.
Zurück zum Zitat H. Hu and B.B. Rath, On the Time Exponent in Isothermal Grain Growth, Metall. Trans., 1970, 1, p 3181–3184 H. Hu and B.B. Rath, On the Time Exponent in Isothermal Grain Growth, Metall. Trans., 1970, 1, p 3181–3184
33.
Zurück zum Zitat L.Z. Han, R.K. Chen, J.F. Gu, and J.S. Pan, X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究 (Behavior of Austenite Grain Growth in X12CrMoWVNbN10-1-1 Ferrite Heat-Resistant Steel), Acta Metall. Sin., 2009, 45, p 1446–1450 ((in Chinese)) L.Z. Han, R.K. Chen, J.F. Gu, and J.S. Pan, X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究 (Behavior of Austenite Grain Growth in X12CrMoWVNbN10-1-1 Ferrite Heat-Resistant Steel), Acta Metall. Sin., 2009, 45, p 1446–1450 ((in Chinese))
34.
Zurück zum Zitat W.M. Tang, Z.X. Zheng, H.J. Tang, R. Ren, and Y.C. Wu, Structural Evolution and Grain Growth Kinetics of the Fe-28Al Elemental Powder During Mechanical Alloying and Annealing, Intermetallics, 2007, 15, p 1020–1026CrossRef W.M. Tang, Z.X. Zheng, H.J. Tang, R. Ren, and Y.C. Wu, Structural Evolution and Grain Growth Kinetics of the Fe-28Al Elemental Powder During Mechanical Alloying and Annealing, Intermetallics, 2007, 15, p 1020–1026CrossRef
35.
Zurück zum Zitat M. Kambara, K. Uenishi, and K.F. Kobayashi, Nano-Structured Intermetallic Compound TiAl Obtained by Crystallization of Mechanically Alloyed Amorphous TiAl, and Its Subsequent Grain Growth, J. Mater. Sci., 2000, 35, p 2897–2905CrossRef M. Kambara, K. Uenishi, and K.F. Kobayashi, Nano-Structured Intermetallic Compound TiAl Obtained by Crystallization of Mechanically Alloyed Amorphous TiAl, and Its Subsequent Grain Growth, J. Mater. Sci., 2000, 35, p 2897–2905CrossRef
36.
Zurück zum Zitat H.V. Atkinson, Theories of Normal Grain Growth in Pure Single Phase Systems, Acta Metall., 1988, 36, p 469–491CrossRef H.V. Atkinson, Theories of Normal Grain Growth in Pure Single Phase Systems, Acta Metall., 1988, 36, p 469–491CrossRef
37.
Zurück zum Zitat R.A. Vandermeer and H. Hu, On the Grain Growth Exponent of Pure Iron, Acta Metall. Mater., 1994, 42, p 3071–3075CrossRef R.A. Vandermeer and H. Hu, On the Grain Growth Exponent of Pure Iron, Acta Metall. Mater., 1994, 42, p 3071–3075CrossRef
38.
Zurück zum Zitat H. Pous-Romero, I. Lonardelli, D. Cogswell, and H.K.D.H. Bhadeshia, Austenite Grain Growth in a Nuclear Pressure Vessel Steel, Mater. Sci. Eng. A, 2013, 567, p 72–79CrossRef H. Pous-Romero, I. Lonardelli, D. Cogswell, and H.K.D.H. Bhadeshia, Austenite Grain Growth in a Nuclear Pressure Vessel Steel, Mater. Sci. Eng. A, 2013, 567, p 72–79CrossRef
39.
Zurück zum Zitat J. Wang, J. Chen, Z. Zhao, and X.Y. Ruan, Modeling of Microstructural Evolution in Microalloyed Steel during Hot Forging Process, Acta Metall. Sin. (Engl. Lett.), 2006, 19, p 279–286CrossRef J. Wang, J. Chen, Z. Zhao, and X.Y. Ruan, Modeling of Microstructural Evolution in Microalloyed Steel during Hot Forging Process, Acta Metall. Sin. (Engl. Lett.), 2006, 19, p 279–286CrossRef
40.
Zurück zum Zitat S.W. Du, Y.T. Li, and Y. Zheng, Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel, J. Mater. Eng. Perform., 2016, 25, p 2661–2669CrossRef S.W. Du, Y.T. Li, and Y. Zheng, Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel, J. Mater. Eng. Perform., 2016, 25, p 2661–2669CrossRef
41.
Zurück zum Zitat S.H.M. Azghandi, V.G. Ahmadabadi, A. Zabett, and F. Fazeli, Modelling of Austenite Grain Growth Kinetics in a Microalloyed Steel (30MSV6) in the Presence of Carbonitride Precipitates, Philos. Mag., 2014, 94, p 2758–2775CrossRef S.H.M. Azghandi, V.G. Ahmadabadi, A. Zabett, and F. Fazeli, Modelling of Austenite Grain Growth Kinetics in a Microalloyed Steel (30MSV6) in the Presence of Carbonitride Precipitates, Philos. Mag., 2014, 94, p 2758–2775CrossRef
42.
Zurück zum Zitat M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck, Analysis of Microstructure and Mechanical Properties of Different High Strength Carbon Steels after Hot Stamping, J. Mater. Process. Technol., 2011, 211, p 1117–1125CrossRef M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck, Analysis of Microstructure and Mechanical Properties of Different High Strength Carbon Steels after Hot Stamping, J. Mater. Process. Technol., 2011, 211, p 1117–1125CrossRef
43.
Zurück zum Zitat S. Kumar, S.K. Nath, and V. Kumar, Continuous Cooling Transformation Behavior in the Weld Coarse Grained Heat Affected Zone and Mechanical Properties of Nb-Microalloyed and HY85 Steels, Mater. Des., 2016, 90, p 177–184CrossRef S. Kumar, S.K. Nath, and V. Kumar, Continuous Cooling Transformation Behavior in the Weld Coarse Grained Heat Affected Zone and Mechanical Properties of Nb-Microalloyed and HY85 Steels, Mater. Des., 2016, 90, p 177–184CrossRef
44.
Zurück zum Zitat S.P. Lu, T. Liang, Y.K. Li, D.Z. Li, L.J. Rong, and Y.Y. Li, Microstructure and Mechanical Properties of Simulated Heat-Affected Zones of EP-823 Steel for ADS/LFR, J. Mater. Sci. Technol., 2015, 31, p 864–871CrossRef S.P. Lu, T. Liang, Y.K. Li, D.Z. Li, L.J. Rong, and Y.Y. Li, Microstructure and Mechanical Properties of Simulated Heat-Affected Zones of EP-823 Steel for ADS/LFR, J. Mater. Sci. Technol., 2015, 31, p 864–871CrossRef
45.
Zurück zum Zitat J. Wang, S.P. Lu, W.C. Dong, D.Z. Li, and L.J. Rong, Microstructural Evolution and Mechanical Properties of Heat Affected Zones for 9Cr2WVTa Steels with Different Carbon Contents, Mater. Des., 2014, 64, p 550–558CrossRef J. Wang, S.P. Lu, W.C. Dong, D.Z. Li, and L.J. Rong, Microstructural Evolution and Mechanical Properties of Heat Affected Zones for 9Cr2WVTa Steels with Different Carbon Contents, Mater. Des., 2014, 64, p 550–558CrossRef
46.
Zurück zum Zitat X. Guo, J.M. Gong, Y. Jiang, X.W. Wang, and Y.P. Zhao, Microstructures and High-Temperature Mechanical Properties in 9Cr-0.5Mo-1.8 W-VNb Steel after Aging at 650 °C, Mater. High Temp., 2015, 32, p 566–574CrossRef X. Guo, J.M. Gong, Y. Jiang, X.W. Wang, and Y.P. Zhao, Microstructures and High-Temperature Mechanical Properties in 9Cr-0.5Mo-1.8 W-VNb Steel after Aging at 650 °C, Mater. High Temp., 2015, 32, p 566–574CrossRef
47.
Zurück zum Zitat Z.X. Shang, Y.Z. Shen, B. Ji, and L.T. Zhang, Effect of δ-Ferrite Evolution and High-Temperature Annealing on Mechanical Properties of 11Cr3W3Co Ferritic/martensitic Steel, Met. Mater. Int., 2016, 22, p 171–180CrossRef Z.X. Shang, Y.Z. Shen, B. Ji, and L.T. Zhang, Effect of δ-Ferrite Evolution and High-Temperature Annealing on Mechanical Properties of 11Cr3W3Co Ferritic/martensitic Steel, Met. Mater. Int., 2016, 22, p 171–180CrossRef
48.
Zurück zum Zitat T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink, Creep Rupture Behavior of Grade 91 Steel, Mater. Sci. Eng., A, 2013, 565, p 382–391CrossRef T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink, Creep Rupture Behavior of Grade 91 Steel, Mater. Sci. Eng., A, 2013, 565, p 382–391CrossRef
49.
Zurück zum Zitat L. Zhao, H.Y. Jing, L.Y. Xu, Y.D. Han, and J.J. Xiu, Experimental Study on Creep Damage Evolution Process of Type IV Cracking in 9Cr-0.5Mo-1.8W-VNb Steel Welded Joint, Eng. Fail. Anal., 2012, 19, p 22–31CrossRef L. Zhao, H.Y. Jing, L.Y. Xu, Y.D. Han, and J.J. Xiu, Experimental Study on Creep Damage Evolution Process of Type IV Cracking in 9Cr-0.5Mo-1.8W-VNb Steel Welded Joint, Eng. Fail. Anal., 2012, 19, p 22–31CrossRef
50.
Zurück zum Zitat M.E. Abd El-Azim, O.H. Ibrahim, and O.E. El-Desoky, Long Term Creep Behaviour of Welded Joints of P91 Steel at 650 °C, Mater. Sci. Eng. A, 2013, 560, p 678–684CrossRef M.E. Abd El-Azim, O.H. Ibrahim, and O.E. El-Desoky, Long Term Creep Behaviour of Welded Joints of P91 Steel at 650 °C, Mater. Sci. Eng. A, 2013, 560, p 678–684CrossRef
51.
Zurück zum Zitat D.H. Meng, F.G. Lu, and H.C. Cui, Investigation on Creep Behavior of Welded Joint of Advanced 9% Cr Steels, J. Mater. Res., 2015, 30, p 197–205CrossRef D.H. Meng, F.G. Lu, and H.C. Cui, Investigation on Creep Behavior of Welded Joint of Advanced 9% Cr Steels, J. Mater. Res., 2015, 30, p 197–205CrossRef
Metadaten
Titel
Investigation on Microstructural Evolutions and Mechanical Properties of P92 Steel During Thermal Processing
verfasst von
Jichao Wang
Pulin Nie
Shangfei Qiao
O. A. Ojo
Chengwu Yao
Zhuguo Li
Jian Huang
Publikationsdatum
10.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3562-9

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Engineering and Performance 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.