Skip to main content

2022 | OriginalPaper | Buchkapitel

11. Ion Beam Sputtering Induced Glancing Angle Deposition

verfasst von : Bernd Rauschenbach

Erschienen in: Low-Energy Ion Irradiation of Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The method of ion beam sputtering under glancing angle conditions in combination with an additional rotation of the sample holder allows the growth of almost arbitrarily designed nano- and microstructures of all material classes on surfaces. The self-shadowing and the surface diffusion essentially govern the structure evolution. It is demonstrated that by varying the particle incidence angle, the temperature, azimuthal rotation frequency, and the beam divergence of the sputtered particles, a wide variety of nanostructure morphologies (e.g., slanted and vertical columns, screws, spirals, or zigzag columns) can be generated. Ballistic simulations are preferably used to simulate the growth of these structures. It can be shown that two basic alternatives of ballistic simulations, off-lattice simulations and on-lattice simulations, are available to successfully model growth. A remarkable result of all experimental investigations and computer simulations is that the column tilt angle is always smaller than the incidence angle. Various explanations are known to explain this fact. These models will be presented and it will be shown that especially the competition model is able to describe a relation between the tilt angle and the angle of incidence for the complete range of material incidence angles. For various applications, patterning of the substrate prior to growth is required to fabricate arrays for highly regular nanostructures. This fabrication is demonstrated and the application of these structures for the realization of biosensors and magnetic nanotubes is shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. van Kranenburg, C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R 11, 295–354 (1994)CrossRef H. van Kranenburg, C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R 11, 295–354 (1994)CrossRef
2.
Zurück zum Zitat A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics (SPIE Press, Bellingham, 2005)CrossRef A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics (SPIE Press, Bellingham, 2005)CrossRef
3.
Zurück zum Zitat T. Karabacak, T.-M. Lu, Shadowing growth and physical self-assembly of 3D columnar structures, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, 2005), Chap. 69, p. 729 T. Karabacak, T.-M. Lu, Shadowing growth and physical self-assembly of 3D columnar structures, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, 2005), Chap. 69, p. 729
4.
Zurück zum Zitat M.M. Hawkeye, M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)CrossRef M.M. Hawkeye, M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)CrossRef
5.
Zurück zum Zitat M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition, in Handbook of deposition technologies for films and coatings, ed. by P.M. Martin, (Elsevier, 2010), pp. 621–678 M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition, in Handbook of deposition technologies for films and coatings, ed. by P.M. Martin, (Elsevier, 2010), pp. 621–678
6.
Zurück zum Zitat M.M. Hawkeye, M.T. Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale (Wiley, New York, 2014) M.M. Hawkeye, M.T. Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale (Wiley, New York, 2014)
7.
Zurück zum Zitat A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progr. Mater. Sci. 76, 59–153 (2016)CrossRef A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progr. Mater. Sci. 76, 59–153 (2016)CrossRef
8.
Zurück zum Zitat C. Grüner, I. Abdulhalim, B. Rauschenbach, Glancing angle deposition for biosensing applications, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), pp. 129–137 C. Grüner, I. Abdulhalim, B. Rauschenbach, Glancing angle deposition for biosensing applications, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), pp. 129–137
9.
Zurück zum Zitat B.A. Movchan, A.V. Demchishin, Study of structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide in vacuum. Fiz. Metal. Metalloved. 28, 653–660 (1969) B.A. Movchan, A.V. Demchishin, Study of structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide in vacuum. Fiz. Metal. Metalloved. 28, 653–660 (1969)
10.
Zurück zum Zitat A. Kundt, Ueber Doppelbrechung des Lichtes in Metallschichten, welche durch Zerstäuben einer Kathode hergestellt sind. Ann. Phys. Chem. 263, 59–71 (1886)CrossRef A. Kundt, Ueber Doppelbrechung des Lichtes in Metallschichten, welche durch Zerstäuben einer Kathode hergestellt sind. Ann. Phys. Chem. 263, 59–71 (1886)CrossRef
11.
Zurück zum Zitat H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluss auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten. Optik 6, 111–124 (1950) H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluss auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten. Optik 6, 111–124 (1950)
12.
Zurück zum Zitat J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Philips Tech. Rev. 27, 87–91 (1966) J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Philips Tech. Rev. 27, 87–91 (1966)
13.
Zurück zum Zitat N.O. Young, J. Kowal, Optically active fluorite films. Nature 183, 104–105 (1959)CrossRef N.O. Young, J. Kowal, Optically active fluorite films. Nature 183, 104–105 (1959)CrossRef
14.
Zurück zum Zitat K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. 13, 2991–2993 (1995)CrossRef K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. 13, 2991–2993 (1995)CrossRef
15.
Zurück zum Zitat K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. 13, 1032–1035 (1995)CrossRef K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. 13, 1032–1035 (1995)CrossRef
16.
Zurück zum Zitat K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616–616 (1996)CrossRef K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616–616 (1996)CrossRef
17.
Zurück zum Zitat C. Patzig, A. Miessler, T. Karabacak, B. Rauschenbach, Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition. Phys. Stat. Sol. B 247, 1310–1321 (2010)CrossRef C. Patzig, A. Miessler, T. Karabacak, B. Rauschenbach, Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition. Phys. Stat. Sol. B 247, 1310–1321 (2010)CrossRef
18.
Zurück zum Zitat C. Patzig, B. Rauschenbach, Temperature effect on the glancing angle deposition of Si sculptured thin films. J. Vac. Sci. Technol. A 26, 881–886 (2008)CrossRef C. Patzig, B. Rauschenbach, Temperature effect on the glancing angle deposition of Si sculptured thin films. J. Vac. Sci. Technol. A 26, 881–886 (2008)CrossRef
19.
Zurück zum Zitat B. Rauschenbach, C. Patzig, Periodic nanoscale Si structures by ion beam induced glancing angle deposition, in Proceedings of IEEE 2nd International Nanoelectronic Conference, Shanghai (2008), pp. 1084–1088 B. Rauschenbach, C. Patzig, Periodic nanoscale Si structures by ion beam induced glancing angle deposition, in Proceedings of IEEE 2nd International Nanoelectronic Conference, Shanghai (2008), pp. 1084–1088
20.
Zurück zum Zitat C. Patzig, B. Rauschenbach, W. Erfurth, A. Milenin, Ordered silicon nanostructures by ion beam induced glancing angle deposition. J. Vac. Sci. Technol. B 25, 833–838 (2007)CrossRef C. Patzig, B. Rauschenbach, W. Erfurth, A. Milenin, Ordered silicon nanostructures by ion beam induced glancing angle deposition. J. Vac. Sci. Technol. B 25, 833–838 (2007)CrossRef
21.
Zurück zum Zitat L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion. Thin Solid Films 305, 1–21 (1997)CrossRef L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion. Thin Solid Films 305, 1–21 (1997)CrossRef
22.
Zurück zum Zitat K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, Oblique-incidence anisotropy of the iron films evaporated at low substrate temperatures. J. Mag. Mag. Mat. 73, 161–166 (1988)CrossRef K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, Oblique-incidence anisotropy of the iron films evaporated at low substrate temperatures. J. Mag. Mag. Mat. 73, 161–166 (1988)CrossRef
23.
Zurück zum Zitat S. Liedtke-Grüner, in Growth of obliquely deposited metallic thin films. Dissertation, University Leipzig (2019) S. Liedtke-Grüner, in Growth of obliquely deposited metallic thin films. Dissertation, University Leipzig (2019)
24.
Zurück zum Zitat T. Brown, K. Robbie, Observations of self-assembled microscale triangular-shaped spikes in copper and silver thin films. Thin Solid Films 531, 103–112 (2013)CrossRef T. Brown, K. Robbie, Observations of self-assembled microscale triangular-shaped spikes in copper and silver thin films. Thin Solid Films 531, 103–112 (2013)CrossRef
25.
Zurück zum Zitat K. Itoh, F. Ichikawa, Y. Takahashi, K. Tsutsumi, Y. Noguchi, K. Okamoto, Columnar grain structure in cobalt films evaporated obliquely at low substrate temperatures. Jpn. J. Appl. Phys. 45, 2534–2538 (2006)CrossRef K. Itoh, F. Ichikawa, Y. Takahashi, K. Tsutsumi, Y. Noguchi, K. Okamoto, Columnar grain structure in cobalt films evaporated obliquely at low substrate temperatures. Jpn. J. Appl. Phys. 45, 2534–2538 (2006)CrossRef
26.
Zurück zum Zitat E. Schubert, J. Fahlteich, Th. Höche, G. Wagner, B. Rauschenbach, Chiral silicon nanostructures. Nucl. Instr. Meth in Phys. Res. B 244, 40–44 (2006) E. Schubert, J. Fahlteich, Th. Höche, G. Wagner, B. Rauschenbach, Chiral silicon nanostructures. Nucl. Instr. Meth in Phys. Res. B 244, 40–44 (2006)
27.
Zurück zum Zitat M. Malec, R.F. Egerton, Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J. Vac. Sci. Technol. A 19, 158–166 (2001)CrossRef M. Malec, R.F. Egerton, Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J. Vac. Sci. Technol. A 19, 158–166 (2001)CrossRef
28.
Zurück zum Zitat Z. Dohnálek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnálková, R.S. Smith, B. D. Kay, Structural and chemical characterization of aligned crystalline nanoporous MgO films grown via reactive ballistic deposition. J. Phys. Chem. B 106, 3526–3529 Z. Dohnálek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnálková, R.S. Smith, B. D. Kay, Structural and chemical characterization of aligned crystalline nanoporous MgO films grown via reactive ballistic deposition. J. Phys. Chem. B 106, 3526–3529
29.
Zurück zum Zitat K.M. Krause, D.W. Dick, M. Malac, M.J. Brett, Taking, a little off the top: nanorod arry morphology and growth studied by focused ion beam topography. Langmuir 26, 17558–21756 (2010)CrossRef K.M. Krause, D.W. Dick, M. Malac, M.J. Brett, Taking, a little off the top: nanorod arry morphology and growth studied by focused ion beam topography. Langmuir 26, 17558–21756 (2010)CrossRef
30.
Zurück zum Zitat S. Liedtke, C. Grüner, A. Lotnyk, B. Rauschenbach, Glancing angle deposition of sculptured thin metal films at room temperature.Nanotechnology 28, 385604 (2017) S. Liedtke, C. Grüner, A. Lotnyk, B. Rauschenbach, Glancing angle deposition of sculptured thin metal films at room temperature.Nanotechnology 28, 385604 (2017)
31.
Zurück zum Zitat M. J. Vold, A numerical approach to the problem of sediment volume. J. Colloid Sci. 14, 168–174 (1959) and Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem. 63, 1608–1612 (1959) M. J. Vold, A numerical approach to the problem of sediment volume. J. Colloid Sci. 14, 168174 (1959) and Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem. 63, 1608–1612 (1959)
32.
Zurück zum Zitat P. Meakin, Models for colloidal aggregation. Ann. Rev. Phys. Chem. 39, 237–267 (1988)CrossRef P. Meakin, Models for colloidal aggregation. Ann. Rev. Phys. Chem. 39, 237–267 (1988)CrossRef
33.
Zurück zum Zitat P. Meakin, R. Jullien, Restructuring effects in the rain model for random deposition. J. Physique 48, 1651–1662 (1987)CrossRef P. Meakin, R. Jullien, Restructuring effects in the rain model for random deposition. J. Physique 48, 1651–1662 (1987)CrossRef
34.
Zurück zum Zitat P. Meakin, R. Jullien, Simple ballistic deposition models for the formation of thin films. Proc. SPIE 0821 (1988) P. Meakin, R. Jullien, Simple ballistic deposition models for the formation of thin films. Proc. SPIE 0821 (1988)
35.
Zurück zum Zitat M. Teschner, S. Kimmerle, B. Heidelberger G. Zachmann L. Raghupathi A. Fuhrmann, M.‐P. Cani, F. Faure, N. Magnenat‐Thalmann, W. Strasser, P. Volino Collision detection for deformable objects. Computer Graphics Forum 24, 61–81 (2005) M. Teschner, S. Kimmerle, B. Heidelberger G. Zachmann L. Raghupathi A. Fuhrmann, M.‐P. Cani, F. Faure, N. Magnenat‐Thalmann, W. Strasser, P. Volino Collision detection for deformable objects. Computer Graphics Forum 24, 61–81 (2005)
36.
Zurück zum Zitat D. Henderson, M.H. Brodsky, P. Chaudhari, Simulation of structural anisotropy and void formation in amorphous thin films. Appl. Phys. Lett. 25, 641–643 (1974)CrossRef D. Henderson, M.H. Brodsky, P. Chaudhari, Simulation of structural anisotropy and void formation in amorphous thin films. Appl. Phys. Lett. 25, 641–643 (1974)CrossRef
37.
Zurück zum Zitat A.G. Dirks, H.A. Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films 47, 219–233 (1977)CrossRef A.G. Dirks, H.A. Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films 47, 219–233 (1977)CrossRef
38.
Zurück zum Zitat H.A. Leamy, G.H. Gilmer, A.G. Dirks, The microstructure of vapor deposited thin films, in Current Topics in Materials Science, ed. by E. Kaldis, Vol. 6 (North-Holland, 1980), pp. 301–344 H.A. Leamy, G.H. Gilmer, A.G. Dirks, The microstructure of vapor deposited thin films, in Current Topics in Materials Science, ed. by E. Kaldis, Vol. 6 (North-Holland, 1980), pp. 301–344
39.
Zurück zum Zitat P. Ramanlal, L.M. Sander, Theory of ballistic aggregation. Phys. Rev. Lett. 54, 1828–1831 (1985)CrossRef P. Ramanlal, L.M. Sander, Theory of ballistic aggregation. Phys. Rev. Lett. 54, 1828–1831 (1985)CrossRef
40.
Zurück zum Zitat R. Jullien, P. Meakin, Simple three-dimensional models for ballistic deposition with restructuring. Europhys. Lett. 4, 1385–1390 (1987)CrossRef R. Jullien, P. Meakin, Simple three-dimensional models for ballistic deposition with restructuring. Europhys. Lett. 4, 1385–1390 (1987)CrossRef
41.
Zurück zum Zitat C. Grüner, S. Liedtke, J. Bauer, S.G. Mayr, B. Rauschenbach, Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. 1, 1370–1376 (2018)CrossRef C. Grüner, S. Liedtke, J. Bauer, S.G. Mayr, B. Rauschenbach, Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. 1, 1370–1376 (2018)CrossRef
42.
Zurück zum Zitat P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Ballistic deposition on surfaces. Phys Rev. A 34, 5091–5103 (1986)CrossRef P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Ballistic deposition on surfaces. Phys Rev. A 34, 5091–5103 (1986)CrossRef
43.
Zurück zum Zitat D.X. Ye, T.M. Lu, Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: growth model for amorphous Si on Si. Phys. Rev. B 75, 23540 (2007) D.X. Ye, T.M. Lu, Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: growth model for amorphous Si on Si. Phys. Rev. B 75, 23540 (2007)
44.
Zurück zum Zitat C. Patzig, T. Karabacak, B. Fuhrmann, B. Rauschenbach, Glancing angle sputter deposited nanostructures on rotating substrates: experiments and simulations. J. Appl. Phys. 104, 094318 (2008) C. Patzig, T. Karabacak, B. Fuhrmann, B. Rauschenbach, Glancing angle sputter deposited nanostructures on rotating substrates: experiments and simulations. J. Appl. Phys. 104, 094318 (2008)
45.
Zurück zum Zitat T. Karabacak, Y.-P. Zhao, G.-C. Wang, T.-M. Lu, Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64, 085322 (2001) T. Karabacak, Y.-P. Zhao, G.-C. Wang, T.-M. Lu, Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64, 085322 (2001)
46.
Zurück zum Zitat D.X. Ye, T.M. Lu, Fanlike aggregations on seeds by parallel ballistic flux: experimental results and Monte Carlo simulations of the growth of three-dimensional Si structures. Phys. Rev. B 75, 115420 (2007) D.X. Ye, T.M. Lu, Fanlike aggregations on seeds by parallel ballistic flux: experimental results and Monte Carlo simulations of the growth of three-dimensional Si structures. Phys. Rev. B 75, 115420 (2007)
47.
Zurück zum Zitat B. Tanto, C.F. Doiron, T.M. Lu, Large artificial anisotropic growth rate in on-lattice simulation of obliquely deposited nanostructures. Phys. Rev. E 83, 016703 (2011) B. Tanto, C.F. Doiron, T.M. Lu, Large artificial anisotropic growth rate in on-lattice simulation of obliquely deposited nanostructures. Phys. Rev. E 83, 016703 (2011)
48.
Zurück zum Zitat C. Grüner, S. Grüner, S.G. Mayr, B. Rauschenbach, Avoiding anisotropies in on-lattice simulations of ballistic deposition. Phys. Stat. Sol. (b) 258, 2000036 (2021) C. Grüner, S. Grüner, S.G. Mayr, B. Rauschenbach, Avoiding anisotropies in on-lattice simulations of ballistic deposition. Phys. Stat. Sol. (b) 258, 2000036 (2021)
49.
Zurück zum Zitat T. Karabacak, J.P. Singh, Y.-P. Zhao, G.C. Wang, T.-M. Lu, Scaling during shadowing growth of isolated nanocolumns. Phys. Rev. B 68, 125408 (2003) T. Karabacak, J.P. Singh, Y.-P. Zhao, G.C. Wang, T.-M. Lu, Scaling during shadowing growth of isolated nanocolumns. Phys. Rev. B 68, 125408 (2003)
50.
Zurück zum Zitat T. Karabacak, G.-C. Wang, T.-M. Lu, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition. J. Vac. Sci. Technol. A 22, 1778–1784 (2004)CrossRef T. Karabacak, G.-C. Wang, T.-M. Lu, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition. J. Vac. Sci. Technol. A 22, 1778–1784 (2004)CrossRef
51.
Zurück zum Zitat C. Grüner, in Oblique angle deposition of thin films—theory, modelling and application. Dissertation, University Leipzig (2019) C. Grüner, in Oblique angle deposition of thin films—theory, modelling and application. Dissertation, University Leipzig (2019)
52.
Zurück zum Zitat P.A. Sánchez, T. Sintes, J.H. E. Cartwright, O. Piro, Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models. Phys. Rev. E 81, 011140 (2010) P.A. Sánchez, T. Sintes, J.H. E. Cartwright, O. Piro, Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models. Phys. Rev. E 81, 011140 (2010)
53.
Zurück zum Zitat T. Smy, D. Vick, M.J. Brett, S.K. Dew, A.T. Wu, J.C. Sit, K.D. Harris, Three-dimensional simulation of film microstructure produced by glancing angle deposition. J. Vac. Sci. Technol. A 18, 2507–2512 (2000)CrossRef T. Smy, D. Vick, M.J. Brett, S.K. Dew, A.T. Wu, J.C. Sit, K.D. Harris, Three-dimensional simulation of film microstructure produced by glancing angle deposition. J. Vac. Sci. Technol. A 18, 2507–2512 (2000)CrossRef
54.
Zurück zum Zitat M. Suzuki, Y. Taga, Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599–5606 (2001)CrossRef M. Suzuki, Y. Taga, Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599–5606 (2001)CrossRef
55.
Zurück zum Zitat Y. Saito, S. Omura, Domain competition during ballistic deposition: Effect of surface diffusion and surface patterning. Phys. Rev. E 84, 021601 (2011) Y. Saito, S. Omura, Domain competition during ballistic deposition: Effect of surface diffusion and surface patterning. Phys. Rev. E 84, 021601 (2011)
56.
Zurück zum Zitat W. Jost, Diffusion in Solids, Liquids Gases (Academic Press, New York, 1970) W. Jost, Diffusion in Solids, Liquids Gases (Academic Press, New York, 1970)
57.
Zurück zum Zitat S. Müller-Pfeiffer, H. van Kraneneburg, J.C. Lodder, A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co-Cr. Thin Solid Films 213, 143–153 (1992)CrossRef S. Müller-Pfeiffer, H. van Kraneneburg, J.C. Lodder, A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co-Cr. Thin Solid Films 213, 143–153 (1992)CrossRef
58.
Zurück zum Zitat G. Ehrlich, Molecular processes at the gas-solid interface, in Structure and Properties of Thin Films, ed. by C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Wiley, New York, 1959), pp. 423–475 G. Ehrlich, Molecular processes at the gas-solid interface, in Structure and Properties of Thin Films, ed. by C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Wiley, New York, 1959), pp. 423–475
59.
Zurück zum Zitat G. Neumann, W. Hirschwald, Mechanism of surface self diffusion. Z. Phys. Chem. B 81, 63–176 (1972) G. Neumann, W. Hirschwald, Mechanism of surface self diffusion. Z. Phys. Chem. B 81, 63–176 (1972)
60.
Zurück zum Zitat S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (a) 217, 1900636 (2019) S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (a) 217, 1900636 (2019)
61.
Zurück zum Zitat K.-H. Müller, Dependence of thin-film microstructure on deposition rate by means of a computer simulation. J. Appl. Phys. 58, 2573–2576 (1985)CrossRef K.-H. Müller, Dependence of thin-film microstructure on deposition rate by means of a computer simulation. J. Appl. Phys. 58, 2573–2576 (1985)CrossRef
62.
Zurück zum Zitat D. Bensimon, B. Shraiman, S. Liang, On the ballistic model of aggregation. Phys Lett. 102 A, 238–240 (1984) D. Bensimon, B. Shraiman, S. Liang, On the ballistic model of aggregation. Phys Lett. 102 A, 238–240 (1984)
63.
Zurück zum Zitat M. Pelliccione, T.-M. Lu, Self-shadowing in ballistic fan formation from point seeds. Phys. Rev. B 75, 245431 (2007) M. Pelliccione, T.-M. Lu, Self-shadowing in ballistic fan formation from point seeds. Phys. Rev. B 75, 245431 (2007)
64.
Zurück zum Zitat B. Tanto, G. Ten Eyck, T.-M. Lu, A model for column angle evolution during oblique angle deposition. J. Appl. Phys. 108, 026107 (2010) B. Tanto, G. Ten Eyck, T.-M. Lu, A model for column angle evolution during oblique angle deposition. J. Appl. Phys. 108, 026107 (2010)
65.
Zurück zum Zitat S. Liang, L.P. Kadanoff, Scaling in a ballistic aggregation model. Phys. Rev. A 3, 2628–2630 (1985)CrossRef S. Liang, L.P. Kadanoff, Scaling in a ballistic aggregation model. Phys. Rev. A 3, 2628–2630 (1985)CrossRef
66.
Zurück zum Zitat J. Krug, P. Meakin, Columnar growth in oblique incidence ballistic deposition: faceting, noise reduction, and mean-field theory. Phys. Rev. A 43, 900–919 (1991)CrossRef J. Krug, P. Meakin, Columnar growth in oblique incidence ballistic deposition: faceting, noise reduction, and mean-field theory. Phys. Rev. A 43, 900–919 (1991)CrossRef
67.
Zurück zum Zitat F. Porcú, F. Prodi, Ballistic accretion on seeds of different sizes. Phys. Rev. A 44, 8313–8315 (1991)CrossRef F. Porcú, F. Prodi, Ballistic accretion on seeds of different sizes. Phys. Rev. A 44, 8313–8315 (1991)CrossRef
68.
Zurück zum Zitat A.V. Limaye, R.E. Amritkar, Theory of growth of ballistic aggregates. Phys. Rev. A 34, 5085–5090 (1986)CrossRef A.V. Limaye, R.E. Amritkar, Theory of growth of ballistic aggregates. Phys. Rev. A 34, 5085–5090 (1986)CrossRef
69.
Zurück zum Zitat A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967) A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967)
70.
Zurück zum Zitat B. Rauschenbach, C. Patzig, Dünne Schichten durch Deposition unter streifenden Einfall. Vakuum für Forschung & Techn. 22, 14–19 (2010)CrossRef B. Rauschenbach, C. Patzig, Dünne Schichten durch Deposition unter streifenden Einfall. Vakuum für Forschung & Techn. 22, 14–19 (2010)CrossRef
71.
Zurück zum Zitat A. Amassian, K. Kaminska, M. Suzuki, L. Martinu, K. Robbie, Onset of shadowing-dominated growth in glancing angle deposition. Appl. Phys. Lett. 91, 173114 (2007) A. Amassian, K. Kaminska, M. Suzuki, L. Martinu, K. Robbie, Onset of shadowing-dominated growth in glancing angle deposition. Appl. Phys. Lett. 91, 173114 (2007)
72.
Zurück zum Zitat C. Patzig, in Glancing angle deposition of silicon nanostructures by ion beam sputtering. Dissertation, University Leipzig (2009) C. Patzig, in Glancing angle deposition of silicon nanostructures by ion beam sputtering. Dissertation, University Leipzig (2009)
73.
Zurück zum Zitat C. Khare, J.W. Gerlach, M. Weise, J. Bauer, T. Höche, B. Rauschenbach, Growth temperature altered morphology of Ge nanocolumns. Phys. Stat. Sol. A 208, 851–856 (2011) C. Khare, J.W. Gerlach, M. Weise, J. Bauer, T. Höche, B. Rauschenbach, Growth temperature altered morphology of Ge nanocolumns. Phys. Stat. Sol. A 208, 851–856 (2011)
74.
Zurück zum Zitat C. Khare, J.W. Gerlach, T. Höche, B. Fuhrmann, H.S. Leipner, B. Rauschenbach, Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition. Appl. Surf. Sci. 258, 9762–9769 (2012)CrossRef C. Khare, J.W. Gerlach, T. Höche, B. Fuhrmann, H.S. Leipner, B. Rauschenbach, Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition. Appl. Surf. Sci. 258, 9762–9769 (2012)CrossRef
75.
Zurück zum Zitat C. Khare, J.W. Gerlach, B. Fuhrmann, B. Rauschenbach, Influence of substrate temperature on glancing angle deposited Ag nanorods. J. Vac. Sci. Technol. A 28, 1002–1009 (2010)CrossRef C. Khare, J.W. Gerlach, B. Fuhrmann, B. Rauschenbach, Influence of substrate temperature on glancing angle deposited Ag nanorods. J. Vac. Sci. Technol. A 28, 1002–1009 (2010)CrossRef
76.
Zurück zum Zitat C. Khare, Gowth of Ge, Ag and multilayered Si/Ge nanostructures by ion beam sputter glancing angle deposition. Disserataion, University Leipzig (2012) C. Khare, Gowth of Ge, Ag and multilayered Si/Ge nanostructures by ion beam sputter glancing angle deposition. Disserataion, University Leipzig (2012)
77.
Zurück zum Zitat M.O. Jensen, M.J. Brett, Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763–768 (2005)CrossRef M.O. Jensen, M.J. Brett, Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763–768 (2005)CrossRef
78.
Zurück zum Zitat D.X. Ye, T. Karabacak, B.K. Lim, G.C. Wang, T.M. Lu, Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology 15, 817–821 (2004)CrossRef D.X. Ye, T. Karabacak, B.K. Lim, G.C. Wang, T.M. Lu, Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology 15, 817–821 (2004)CrossRef
79.
Zurück zum Zitat C. Khare, R. Fechner, J. Bauer, M. Weise, B. Rauschenbach, Glancing angle deposition of Ge nanorod arrays on Si patterned substrates. J. Vac. Sci. Technol. A 29, 041503 (2011) C. Khare, R. Fechner, J. Bauer, M. Weise, B. Rauschenbach, Glancing angle deposition of Ge nanorod arrays on Si patterned substrates. J. Vac. Sci. Technol. A 29, 041503 (2011)
80.
Zurück zum Zitat C. Khare, B. Fuhrmann, H.S. Leipner, J. Bauer, B. Rauschenbach, Optimized growth of Ge nanorod arrays on Si patterns. J. Vac. Sci. Technol. A 29, 051501 (2011) C. Khare, B. Fuhrmann, H.S. Leipner, J. Bauer, B. Rauschenbach, Optimized growth of Ge nanorod arrays on Si patterns. J. Vac. Sci. Technol. A 29, 051501 (2011)
81.
Zurück zum Zitat S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, M. Mensing, P. Schumacher, B. Rauschenbach, Crystallinity and texture of molybdenum thin films obliquely deposited at room temperature. Thin Solid Films 685, 6–16 (2019)CrossRef S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, M. Mensing, P. Schumacher, B. Rauschenbach, Crystallinity and texture of molybdenum thin films obliquely deposited at room temperature. Thin Solid Films 685, 6–16 (2019)CrossRef
82.
Zurück zum Zitat S. Lichter, J. Chen, Model for columnar microstructure of thin solid films. Phys. Rev. Lett. 56, 1396–1399 (1986)CrossRef S. Lichter, J. Chen, Model for columnar microstructure of thin solid films. Phys. Rev. Lett. 56, 1396–1399 (1986)CrossRef
83.
Zurück zum Zitat R. Fiedler, G. Schirmer, Säulenwachstum bei aufgedampften Schichten. Thin Solid Films 167, 281–289 (1988)CrossRef R. Fiedler, G. Schirmer, Säulenwachstum bei aufgedampften Schichten. Thin Solid Films 167, 281–289 (1988)CrossRef
84.
Zurück zum Zitat Y. D. Fan, X. P. Li, J. Yang, J. P. Li, Microscopic model for columnar growth of thin films. Phys. Stat. Sol. (a) 134, 157–166 (1992) Y. D. Fan, X. P. Li, J. Yang, J. P. Li, Microscopic model for columnar growth of thin films. Phys. Stat. Sol. (a) 134, 157–166 (1992)
85.
Zurück zum Zitat R.N. Tait, T. Smy, M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993)CrossRef R.N. Tait, T. Smy, M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993)CrossRef
86.
Zurück zum Zitat Hodgkinson, I., Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Optics 37, 2653–2659 (1998) Hodgkinson, I., Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Optics 37, 2653–2659 (1998)
87.
Zurück zum Zitat H. Zhu, W. Cao, G. K. Larsen, R. Toole, Y. Zhao, Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J. Vac. Sci. Technol. B 30, 030606 (2012) H. Zhu, W. Cao, G. K. Larsen, R. Toole, Y. Zhao, Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J. Vac. Sci. Technol. B 30, 030606 (2012)
88.
Zurück zum Zitat D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, E. F. Schubert, Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 93, 101914 (2008) D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, E. F. Schubert, Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 93, 101914 (2008)
89.
Zurück zum Zitat R. Messier, T. Gehrke, C. Frankel, V.C. Venugopal, W. Otaño, A. Lakhtakia, Engineered sculptured nematic thin films. J. Vac. Sci. Techn. 15, 2148–2152 (1994)CrossRef R. Messier, T. Gehrke, C. Frankel, V.C. Venugopal, W. Otaño, A. Lakhtakia, Engineered sculptured nematic thin films. J. Vac. Sci. Techn. 15, 2148–2152 (1994)CrossRef
90.
Zurück zum Zitat M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671–2674 (1999)CrossRef M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671–2674 (1999)CrossRef
91.
Zurück zum Zitat C. Patzig, C. Khare, B. Fuhrmann, B. Rauschenbach, Periodically arranged Si nanostructures by glancing angle deposition on patterned substrates. Phys. Stat. Sol. (b) 247, 1322–1344 (2010) C. Patzig, C. Khare, B. Fuhrmann, B. Rauschenbach, Periodically arranged Si nanostructures by glancing angle deposition on patterned substrates. Phys. Stat. Sol. (b) 247, 1322–1344 (2010)
92.
Zurück zum Zitat D.-X. Ye, C. L. Ellison, B.-K. Lim, T.-M. Lu, Shadowing growth of three-dimensional nanostructures on finite size seeds. J. Appl. Phys. 103, 103531 (2008) D.-X. Ye, C. L. Ellison, B.-K. Lim, T.-M. Lu, Shadowing growth of three-dimensional nanostructures on finite size seeds. J. Appl. Phys. 103, 103531 (2008)
93.
Zurück zum Zitat D.-X. Ye, in Shadowing growth by physical vapor deposition. Dissertation, Rensselaer Polytechnic Institute Troy, New York (2006) D.-X. Ye, in Shadowing growth by physical vapor deposition. Dissertation, Rensselaer Polytechnic Institute Troy, New York (2006)
94.
Zurück zum Zitat M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large–area sculptured thin–film architectures. Nanotechnology 15, 303–310 (2004)CrossRef M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large–area sculptured thin–film architectures. Nanotechnology 15, 303–310 (2004)CrossRef
95.
Zurück zum Zitat S. Kesapragada, P. Sotherland, D. Gall, Ta nanotubes grown by glancing angle deposition. J. Vac. Sci. Technol. B 26, 678–681 (2008)CrossRef S. Kesapragada, P. Sotherland, D. Gall, Ta nanotubes grown by glancing angle deposition. J. Vac. Sci. Technol. B 26, 678–681 (2008)CrossRef
96.
Zurück zum Zitat M. Summers, B. Djurfors, M. Brett, Fabrication of silicon submicrometer ribbons by glancing angle deposition. J. Micro/Nanolithography, MEMS and MOEMS 4, 033012 (2005) M. Summers, B. Djurfors, M. Brett, Fabrication of silicon submicrometer ribbons by glancing angle deposition. J. Micro/Nanolithography, MEMS and MOEMS 4, 033012 (2005)
97.
Zurück zum Zitat C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition, J. Appl. Phys. 103, 024313 (2008) C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition, J. Appl. Phys. 103, 024313 (2008)
98.
Zurück zum Zitat C.M. Zhou, D. Gall, Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl. Phys. Lett. 90, 093103 (2007) C.M. Zhou, D. Gall, Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl. Phys. Lett. 90, 093103 (2007)
99.
Zurück zum Zitat C. Zhou, D. Gall, Surface patterning by nanosphere lithography for layer growth with ordered pores. Thin Solid Films 516, 433–437 (2007)CrossRef C. Zhou, D. Gall, Surface patterning by nanosphere lithography for layer growth with ordered pores. Thin Solid Films 516, 433–437 (2007)CrossRef
100.
Zurück zum Zitat A. Pawar, I. Kretzschmar, Patchey particles by glancing angle deposition. Langmuir 24, 355–358 (2008)CrossRef A. Pawar, I. Kretzschmar, Patchey particles by glancing angle deposition. Langmuir 24, 355–358 (2008)CrossRef
101.
Zurück zum Zitat B. Dick, J.C. Sit, M.J. Brett, I.M.N. Votte, C.W.M. Bastiaansen, Embossed polymetric relief structures as a template for the growth of periodic inorganic microstructures. Nano Lett. 1, 71–73 (2001)CrossRef B. Dick, J.C. Sit, M.J. Brett, I.M.N. Votte, C.W.M. Bastiaansen, Embossed polymetric relief structures as a template for the growth of periodic inorganic microstructures. Nano Lett. 1, 71–73 (2001)CrossRef
102.
Zurück zum Zitat S. Krishnamoorthy, C. Hinderling, H. Heinzelmann, Nanoscale patterning with block copolymers. Mater. Today 9, 40–47 (2006)CrossRef S. Krishnamoorthy, C. Hinderling, H. Heinzelmann, Nanoscale patterning with block copolymers. Mater. Today 9, 40–47 (2006)CrossRef
103.
Zurück zum Zitat M. Mäder, T. Höche, J.W. Gerlach, R. Böhme, K. Zimmer, B. Rauschenbach, Large area metal dot matrices made by diffraction mask projection laser ablation. Phys. Stat. Sol. (RRL) 2, 34–36 (2008) M. Mäder, T. Höche, J.W. Gerlach, R. Böhme, K. Zimmer, B. Rauschenbach, Large area metal dot matrices made by diffraction mask projection laser ablation. Phys. Stat. Sol. (RRL) 2, 34–36 (2008)
104.
Zurück zum Zitat M.O. Jensen, M.J. Brett, Periodically structured glancing angle depsoition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)CrossRef M.O. Jensen, M.J. Brett, Periodically structured glancing angle depsoition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)CrossRef
105.
Zurück zum Zitat E. Main, T. Karabacak, T.M. Lu, Continuum model for nanocolumn growth during oblique angle deposition. J. Appl. Phys. 95, 4346–4351 (2004)CrossRef E. Main, T. Karabacak, T.M. Lu, Continuum model for nanocolumn growth during oblique angle deposition. J. Appl. Phys. 95, 4346–4351 (2004)CrossRef
106.
Zurück zum Zitat M. Weise, in Dreidimensionale Germanium- und Siliziumstrukturen. Unpublished Diploma thesis, Universität Leipzig (2010) M. Weise, in Dreidimensionale Germanium- und Siliziumstrukturen. Unpublished Diploma thesis, Universität Leipzig (2010)
107.
Zurück zum Zitat B. Dick, M.J. Brett, T. Smy, M. Belov, M.R. Freeman, Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B 19, 1813–1819 (2001)CrossRef B. Dick, M.J. Brett, T. Smy, M. Belov, M.R. Freeman, Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B 19, 1813–1819 (2001)CrossRef
108.
Zurück zum Zitat J. Bauer, M. Weise, B. Rauschenbach, N. Geyer, B. Fuhrmann, Shape evolution in glancing angle deposition of arranged germanium nanocolumns. J. Appl. Phys. 111, 104309 (2012) J. Bauer, M. Weise, B. Rauschenbach, N. Geyer, B. Fuhrmann, Shape evolution in glancing angle deposition of arranged germanium nanocolumns. J. Appl. Phys. 111, 104309 (2012)
109.
Zurück zum Zitat I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28, 214–242 (2008)CrossRef I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28, 214–242 (2008)CrossRef
110.
Zurück zum Zitat A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser & Photonics Rev. 5, 571–606 (2011)CrossRef A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser & Photonics Rev. 5, 571–606 (2011)CrossRef
111.
Zurück zum Zitat M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)CrossRef M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)CrossRef
112.
Zurück zum Zitat M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRef M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRef
113.
Zurück zum Zitat S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 579–3587 (2014)CrossRef S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 579–3587 (2014)CrossRef
114.
Zurück zum Zitat I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett. 94, 063106 (2009) I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett. 94, 063106 (2009)
115.
Zurück zum Zitat Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008) Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008)
116.
Zurück zum Zitat J.R. Sánchez-Valencia, J. Toudert, A. Borras, C. López-Santos, A. Barranco, I.O. Feliu, A.R. González-Elipe, Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar films. Plasmonics 5, 241–250 (2010)CrossRef J.R. Sánchez-Valencia, J. Toudert, A. Borras, C. López-Santos, A. Barranco, I.O. Feliu, A.R. González-Elipe, Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar films. Plasmonics 5, 241–250 (2010)CrossRef
117.
Zurück zum Zitat A. Karabchevsky, C. Khare, B. Rauschenbach, I. Abdulhalim, Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films, J. Nanophotonics 6, 061508 (2012) A. Karabchevsky, C. Khare, B. Rauschenbach, I. Abdulhalim, Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films, J. Nanophotonics 6, 061508 (2012)
118.
Zurück zum Zitat S.K. Srivastava, C. Grüner, D. Hirsch, B. Rauschenbach, I. Abdulhalim, Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt. Express 25, 4761–4772 (2017)CrossRef S.K. Srivastava, C. Grüner, D. Hirsch, B. Rauschenbach, I. Abdulhalim, Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt. Express 25, 4761–4772 (2017)CrossRef
119.
Zurück zum Zitat S.Y. Song, Y.D. Han, Y.M. Park, C.Y. Jeong, Y.J. Yang, M.S. Kim, Y. Ku, H.C. Yoon, Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 35, 355–362 (2012)CrossRef S.Y. Song, Y.D. Han, Y.M. Park, C.Y. Jeong, Y.J. Yang, M.S. Kim, Y. Ku, H.C. Yoon, Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 35, 355–362 (2012)CrossRef
120.
Zurück zum Zitat Y. Wang, L. Wu, T.I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, B. Liedberg, Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale 8, 8008–8016 (2016)CrossRef Y. Wang, L. Wu, T.I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, B. Liedberg, Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale 8, 8008–8016 (2016)CrossRef
121.
Zurück zum Zitat S.K. Srivastava, H.B. Hamo, A. Kushmaro, R.S. Marks, C. Grüner, B. Rauschenbach, I. Abdulhalim, Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst 140, 3201–3209 (2015) S.K. Srivastava, H.B. Hamo, A. Kushmaro, R.S. Marks, C. Grüner, B. Rauschenbach, I. Abdulhalim, Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst 140, 3201–3209 (2015)
122.
Zurück zum Zitat B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26, 1178–1194 (2010)CrossRef B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26, 1178–1194 (2010)CrossRef
123.
Zurück zum Zitat O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, K. Nielsch, Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys. Stat. Sol. (b) 247, 1365–1371 (2010) O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, K. Nielsch, Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys. Stat. Sol. (b) 247, 1365–1371 (2010)
124.
Zurück zum Zitat O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, D. Görlitz, Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes, J. Appl. Phys. 109, 093910 (2011) O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, D. Görlitz, Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes, J. Appl. Phys. 109, 093910 (2011)
Metadaten
Titel
Ion Beam Sputtering Induced Glancing Angle Deposition
verfasst von
Bernd Rauschenbach
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.