Skip to main content
Erschienen in: Numerical Algorithms 3/2021

13.04.2020 | Original Paper

Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations

Erschienen in: Numerical Algorithms | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we extend the Jacobi spectral approximation to the boundary value problems of nonlinear fractional pantograph differential equations. First, the differential equation is equivalently restated as a Volterra-Fredholm integral equation. Second, we introduce the existence and uniqueness of the solution for the problem. Then, the Jacobi-Gauss points and the Jacobi-Gauss quadrature formula are used to solve the obtained integral equation. The error estimates for the proposed scheme are investigated under the \(L^{\infty }\) norm and the weighted L2 norm. Finally, two illustrative examples are included to confirm our analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: Fundamentals in single domains. Springer, Berlin (2006)CrossRef Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: Fundamentals in single domains. Springer, Berlin (2006)CrossRef
2.
Zurück zum Zitat Diethelm, K.: The analysis of fractional differential equations : An application-oriented exposition using differential operators of Caputo Type. Lecture notes in mathematics. Springer, Berlin (2010)CrossRef Diethelm, K.: The analysis of fractional differential equations : An application-oriented exposition using differential operators of Caputo Type. Lecture notes in mathematics. Springer, Berlin (2010)CrossRef
3.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)MathSciNetCrossRef Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algorithms 81(1), 57–77 (2019)MathSciNetCrossRef Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algorithms 81(1), 57–77 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Huang, Q., Xie, H., Brunner, H.: Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type. SIAM J. Sci. Comput. 33(5), 2664–2684 (2011)MathSciNetCrossRef Huang, Q., Xie, H., Brunner, H.: Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type. SIAM J. Sci. Comput. 33(5), 2664–2684 (2011)MathSciNetCrossRef
6.
Zurück zum Zitat Iqbal, M.A., Saeed, U., Mohyud-Din, S.T.: Modified Laguerre wavelets method for delay differential equations of fractional-order. Egyptian J. Basic Appl. Sci. 2(1), 50–54 (2015)CrossRef Iqbal, M.A., Saeed, U., Mohyud-Din, S.T.: Modified Laguerre wavelets method for delay differential equations of fractional-order. Egyptian J. Basic Appl. Sci. 2(1), 50–54 (2015)CrossRef
7.
Zurück zum Zitat Kufner, A., Persson, L.E., Samko, N.: Weighted inequalities of hardy type world, Scientific Publishing Company (2017) Kufner, A., Persson, L.E., Samko, N.: Weighted inequalities of hardy type world, Scientific Publishing Company (2017)
8.
Zurück zum Zitat Li, X., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China 7(1), 69–84 (2012)MathSciNetCrossRef Li, X., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China 7(1), 69–84 (2012)MathSciNetCrossRef
9.
Zurück zum Zitat Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38(4), 1434–1448 (2014)MathSciNetCrossRef Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38(4), 1434–1448 (2014)MathSciNetCrossRef
10.
Zurück zum Zitat Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)MathSciNetCrossRef Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)MathSciNetCrossRef
11.
Zurück zum Zitat Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. a survey. J. Comput. Appl. Math. 134(1-2), 325–341 (2001)MathSciNetCrossRef Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. a survey. J. Comput. Appl. Math. 134(1-2), 325–341 (2001)MathSciNetCrossRef
12.
Zurück zum Zitat Nemati, S., Lima, P., Sedaghat, S.: An effective numerical method for solving fractional pantograph differential equations using modification of hat functions. Appl. Numer. Math. 131, 174–189 (2018)MathSciNetCrossRef Nemati, S., Lima, P., Sedaghat, S.: An effective numerical method for solving fractional pantograph differential equations using modification of hat functions. Appl. Numer. Math. 131, 174–189 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74(1), 223–245 (2017)MathSciNetCrossRef Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74(1), 223–245 (2017)MathSciNetCrossRef
14.
Zurück zum Zitat Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309(1), 493–510 (2017)MathSciNetCrossRef Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309(1), 493–510 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Saeed, U., Rehman, M.U., Iqbal, M.A.: Modified Chebyshev wavelet methods for fractional delay-type equations. Appl. Math. Comput. 264(1), 431–442 (2015)MathSciNetMATH Saeed, U., Rehman, M.U., Iqbal, M.A.: Modified Chebyshev wavelet methods for fractional delay-type equations. Appl. Math. Comput. 264(1), 431–442 (2015)MathSciNetMATH
16.
Zurück zum Zitat Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer Science & Business Media (2011) Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer Science & Business Media (2011)
17.
Zurück zum Zitat Shi, X., Wei, Y.: Convergence analysis of the spectral collocation methods for two-dimensional nonlinear weakly singular Volterra integral equations. Lith. Math. J. 58(1), 75–94 (2018)MathSciNetCrossRef Shi, X., Wei, Y.: Convergence analysis of the spectral collocation methods for two-dimensional nonlinear weakly singular Volterra integral equations. Lith. Math. J. 58(1), 75–94 (2018)MathSciNetCrossRef
18.
Zurück zum Zitat Tang, X., Shi, Y., Xu, H.: Well conditioned pseudospectral schemes with tunable basis for fractional delay differential equations. J. Sci. Comput. 74(2), 920–936 (2018)MathSciNetCrossRef Tang, X., Shi, Y., Xu, H.: Well conditioned pseudospectral schemes with tunable basis for fractional delay differential equations. J. Sci. Comput. 74(2), 920–936 (2018)MathSciNetCrossRef
19.
Zurück zum Zitat Trif, D.: Direct operatorial tau method for pantograph-type equations. Appl. Math. Comput. 219(4), 2194–2203 (2012)MathSciNetMATH Trif, D.: Direct operatorial tau method for pantograph-type equations. Appl. Math. Comput. 219(4), 2194–2203 (2012)MathSciNetMATH
20.
Zurück zum Zitat Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)MathSciNetCrossRef Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)MathSciNetCrossRef
21.
Zurück zum Zitat Wang, W.: High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the geometric mesh. Appl. Math. Model. 39(1), 270–283 (2015)MathSciNetCrossRef Wang, W.: High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the geometric mesh. Appl. Math. Model. 39(1), 270–283 (2015)MathSciNetCrossRef
22.
Zurück zum Zitat Yang, C.: Modified Chebyshev collocation method for pantograph-type differential equations. Appl. Numer. Math. 134(14), 132–144 (2018)MathSciNetCrossRef Yang, C.: Modified Chebyshev collocation method for pantograph-type differential equations. Appl. Numer. Math. 134(14), 132–144 (2018)MathSciNetCrossRef
23.
Zurück zum Zitat Yang, Y., Chen, Y.: Spectral collocation methods for nonlinear Volterra integro-differential equations with weakly singular kernels. Bull. Malaysian Math. Sci.Soc. 42, 297–314 (2019)MathSciNetCrossRef Yang, Y., Chen, Y.: Spectral collocation methods for nonlinear Volterra integro-differential equations with weakly singular kernels. Bull. Malaysian Math. Sci.Soc. 42, 297–314 (2019)MathSciNetCrossRef
24.
Zurück zum Zitat Yang, Y., Tohidi, E.: Numerical solution of multi-pantograph delay boundary value problems via an efficient approach with the convergence analysis. Computational and Applied Mathematics 38(3) (2019) Yang, Y., Tohidi, E.: Numerical solution of multi-pantograph delay boundary value problems via an efficient approach with the convergence analysis. Computational and Applied Mathematics 38(3) (2019)
25.
Zurück zum Zitat Yüzbaṡı, Ṡ., Sezer, M.: Shifted Legendre approximation with the residual correction to solve pantograph-delay type differential equations. Appl. Math. Model. 39(21), 6529–6542 (2015)MathSciNetCrossRef Yüzbaṡı, Ṡ., Sezer, M.: Shifted Legendre approximation with the residual correction to solve pantograph-delay type differential equations. Appl. Math. Model. 39(21), 6529–6542 (2015)MathSciNetCrossRef
Metadaten
Titel
Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations
Publikationsdatum
13.04.2020
Erschienen in
Numerical Algorithms / Ausgabe 3/2021
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00924-7

Weitere Artikel der Ausgabe 3/2021

Numerical Algorithms 3/2021 Zur Ausgabe