Skip to main content

2017 | OriginalPaper | Buchkapitel

9. Catalyst Layer Modeling

verfasst von : Tanja Vidaković-Koch, Richard Hanke-Rauschenbach, Isaí Gonzalez Martínez, Kai Sundmacher

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The overall performance of a fuel cell or an electrochemical reactor depends greatly on properties of catalyst layers, where electrochemical reactions take place. Optimization of these structures in the past was mainly guided by experimental methods. For substantial progress in this field, combination of experiments with modeling is highly desirable. In this chapter focus is on macroscale models, since at the moment they provide more straightforward relationship to experimentally measurable quantities. After introducing the physical structure of a catalyst layer, we discuss typical macroscale modeling approaches such as interface, porous, and agglomerate models. We show how governing equations for the state fields, like potential or concentration can be derived and which typical simplifications can be made. For derivations, a porous electrode model has been chosen as a reference case. We prove that the interface model is a simplification of a porous model, where all gradients can be neglected. Furthermore, we demonstrate that the agglomerate model is an extension of the porous model, where in addition to macroscale, additional length scale is considered. Finally some selected examples regarding different macroscale models have been shown. Interface model has low capability to describe the structure of the catalyst layer, but it can be utilized to resolve complex reaction mechanisms, providing reaction kinetic parameters for distributed models. It was shown that the agglomerate models, having more structural parameters of the catalyst layer, are more suitable for catalyst layer optimization than the porous models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat I. Moussallem, J. Jörissen, U. Kunz, S. Pinnow, T. Turek: Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects, J. Appl. Electrochem. 38, 1177–1194 (2008)CrossRef I. Moussallem, J. Jörissen, U. Kunz, S. Pinnow, T. Turek: Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects, J. Appl. Electrochem. 38, 1177–1194 (2008)CrossRef
[2]
Zurück zum Zitat W.K. Epting, J. Gelb, S. Litster: Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale x-ray computed tomography, Adv. Functional Mater. 22, 555–560 (2012)CrossRef W.K. Epting, J. Gelb, S. Litster: Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale x-ray computed tomography, Adv. Functional Mater. 22, 555–560 (2012)CrossRef
[3]
Zurück zum Zitat H.-R. Jhong, F.R. Brushett, L. Yin, D.M. Stevenson, P.J.A. Kenis: Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell, J. Electrochem. Soc. 159, B292–B298 (2012)CrossRef H.-R. Jhong, F.R. Brushett, L. Yin, D.M. Stevenson, P.J.A. Kenis: Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell, J. Electrochem. Soc. 159, B292–B298 (2012)CrossRef
[4]
Zurück zum Zitat H. Markoetter, I. Manke, P. Krueger, T. Arlt, J. Haussmann, M. Klages, H. Riesemeier, C. Hartnig, J. Scholta, J. Banhart: Investigation of 3-D water transport paths in gas diffusion layers by combined in-situ synchrotron x-ray radiography and tomography, Electrochem. Commun. 13, 1001–1004 (2011)CrossRef H. Markoetter, I. Manke, P. Krueger, T. Arlt, J. Haussmann, M. Klages, H. Riesemeier, C. Hartnig, J. Scholta, J. Banhart: Investigation of 3-D water transport paths in gas diffusion layers by combined in-situ synchrotron x-ray radiography and tomography, Electrochem. Commun. 13, 1001–1004 (2011)CrossRef
[5]
Zurück zum Zitat T. Vidaković-Koch, I. Gonzalez Martinez, R. Kuwertz, U. Kunz, T. Turek, K. Sundmacher: Electrochemical membrane reactors for sustainable chlorine recycling, Membranes 2, 510–528 (2012)CrossRef T. Vidaković-Koch, I. Gonzalez Martinez, R. Kuwertz, U. Kunz, T. Turek, K. Sundmacher: Electrochemical membrane reactors for sustainable chlorine recycling, Membranes 2, 510–528 (2012)CrossRef
[6]
Zurück zum Zitat M. Eikerling, A.A. Kornyshev, A.R. Kucernak: Water in polymer electrolyte fuel cells: Friend or foe?, Physics Today 59, 38–44 (2006)CrossRef M. Eikerling, A.A. Kornyshev, A.R. Kucernak: Water in polymer electrolyte fuel cells: Friend or foe?, Physics Today 59, 38–44 (2006)CrossRef
[7]
Zurück zum Zitat X. Yu, J.L. Yuan, B. Sunden: Review on the properties of nano-/microstructures in the catalyst layer of PEMFC, ASME J. Fuel Cell Sci. Technol. 8(3), 034001 (2011)CrossRef X. Yu, J.L. Yuan, B. Sunden: Review on the properties of nano-/microstructures in the catalyst layer of PEMFC, ASME J. Fuel Cell Sci. Technol. 8(3), 034001 (2011)CrossRef
[8]
Zurück zum Zitat A.A. Shah, K.H. Luo, T.R. Ralph, F.C. Walsh: Recent trends and developments in polymer electrolyte membrane fuel cell modelling, Electrochimica Acta 56, 3731–3757 (2011)CrossRef A.A. Shah, K.H. Luo, T.R. Ralph, F.C. Walsh: Recent trends and developments in polymer electrolyte membrane fuel cell modelling, Electrochimica Acta 56, 3731–3757 (2011)CrossRef
[9]
Zurück zum Zitat J. Zhang: PEM Fuel Cell Catalysts and Catalyst Layers – Fundamentals and Applications (Springer, Berlin, Heidelberg 2008)CrossRef J. Zhang: PEM Fuel Cell Catalysts and Catalyst Layers – Fundamentals and Applications (Springer, Berlin, Heidelberg 2008)CrossRef
[10]
Zurück zum Zitat Y. Wang, X. Feng: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes, J. Electrochem. Soc. 155, B1289–B1295 (2008)CrossRef Y. Wang, X. Feng: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes, J. Electrochem. Soc. 155, B1289–B1295 (2008)CrossRef
[11]
Zurück zum Zitat H. Wendt, H. Vogt, G. Kreysa, D.M. Kolb, G.E. Engelmann, J.C. Ziegler, H. Goldacker, K. Jüttner, U. Galla, H. Schmieder, E. Steckhan: Ullmann’s Encyclopedia of Industrial Chemistry: Electrochemistry, Vol. 11, 6th edn. (Wiley-VCH, Weinheim 2000) p. 425 H. Wendt, H. Vogt, G. Kreysa, D.M. Kolb, G.E. Engelmann, J.C. Ziegler, H. Goldacker, K. Jüttner, U. Galla, H. Schmieder, E. Steckhan: Ullmann’s Encyclopedia of Industrial Chemistry: Electrochemistry, Vol. 11, 6th edn. (Wiley-VCH, Weinheim 2000) p. 425
[12]
Zurück zum Zitat P.K. Das, X. Li, Z.S. Liu: A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells, J. Power Sources 179, 186–199 (2008)CrossRef P.K. Das, X. Li, Z.S. Liu: A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells, J. Power Sources 179, 186–199 (2008)CrossRef
[13]
Zurück zum Zitat N. Khajeh-Hosseini-Dalasm, K. Fushinobu, K. Okazaki: Three-dimensional transient two-phase study of the cathode side of a PEM fuel cell, Int. J. Hydrogen Energy 35, 4234–4246 (2010)CrossRef N. Khajeh-Hosseini-Dalasm, K. Fushinobu, K. Okazaki: Three-dimensional transient two-phase study of the cathode side of a PEM fuel cell, Int. J. Hydrogen Energy 35, 4234–4246 (2010)CrossRef
[14]
Zurück zum Zitat C. Song, J. Zhang: Electrocatalytic oxygen reduction reaction. In: PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. by J. Zhang (Springer, Berlin, Heidelberg 2008) p. 1119 C. Song, J. Zhang: Electrocatalytic oxygen reduction reaction. In: PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. by J. Zhang (Springer, Berlin, Heidelberg 2008) p. 1119
[15]
Zurück zum Zitat M. Carmo, A.R. Dos Santos, J.G.R. Poco, M. Linardi: Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications, J. Power Sources 173, 860–866 (2007)CrossRef M. Carmo, A.R. Dos Santos, J.G.R. Poco, M. Linardi: Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications, J. Power Sources 173, 860–866 (2007)CrossRef
[16]
Zurück zum Zitat D.J. Jones, J. Peron, Y. Nedellec, J. Roziere: The effect of dissolution, migration and precipitation of platinum in Nafion-based membrane electrode assemblies during fuel cell operation at high potential, J. Power Sources 185, 1209–1217 (2008)CrossRef D.J. Jones, J. Peron, Y. Nedellec, J. Roziere: The effect of dissolution, migration and precipitation of platinum in Nafion-based membrane electrode assemblies during fuel cell operation at high potential, J. Power Sources 185, 1209–1217 (2008)CrossRef
[17]
Zurück zum Zitat W. Bi, G.E. Gray, T.F. Fuller: PEM fuel cell PtC dissolution and deposition in Nafion electrolyte, Electrochem. Solid-State Lett. 10, B101–B104 (2007)CrossRef W. Bi, G.E. Gray, T.F. Fuller: PEM fuel cell PtC dissolution and deposition in Nafion electrolyte, Electrochem. Solid-State Lett. 10, B101–B104 (2007)CrossRef
[18]
Zurück zum Zitat S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov: Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc. 131, 13898–13899 (2009)CrossRef S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov: Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc. 131, 13898–13899 (2009)CrossRef
[19]
Zurück zum Zitat L. Wang, B.L. Yi, H.M. Zhang, D.M. Xing: Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells, Polymers Adv. Technol. 19, 1809–1815 (2008)CrossRef L. Wang, B.L. Yi, H.M. Zhang, D.M. Xing: Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells, Polymers Adv. Technol. 19, 1809–1815 (2008)CrossRef
[21]
Zurück zum Zitat K.A. Mauritz, R.B. Moore: State of understanding of Nafion, Chemical Rev. 104, 4535–4586 (2004)CrossRef K.A. Mauritz, R.B. Moore: State of understanding of Nafion, Chemical Rev. 104, 4535–4586 (2004)CrossRef
[22]
Zurück zum Zitat J.T. Hinatsu, M. Mizuhata, H. Takenaka: Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc. 141, 1493–1498 (1994)CrossRef J.T. Hinatsu, M. Mizuhata, H. Takenaka: Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc. 141, 1493–1498 (1994)CrossRef
[23]
Zurück zum Zitat D.R. Morris, X. Sun: Water-sorption and transport properties of Nafion, 117 H, J. Appl. Polymer Sci. 50, 1445–1452 (1993)CrossRef D.R. Morris, X. Sun: Water-sorption and transport properties of Nafion, 117 H, J. Appl. Polymer Sci. 50, 1445–1452 (1993)CrossRef
[24]
Zurück zum Zitat S. Motupally, A.J. Becker, J.W. Weidner: Diffusion of water in Nafion 115 membranes, J. Electrochem. Soc. 147, 3171–3177 (2000)CrossRef S. Motupally, A.J. Becker, J.W. Weidner: Diffusion of water in Nafion 115 membranes, J. Electrochem. Soc. 147, 3171–3177 (2000)CrossRef
[25]
Zurück zum Zitat T.E. Springer, M.S. Wilson, S. Gottesfeld: Modeling and experimental diagnostics in polymer electrolyte fuel cells, J. Electrochem. Soc. 140, 3513–3526 (1993)CrossRef T.E. Springer, M.S. Wilson, S. Gottesfeld: Modeling and experimental diagnostics in polymer electrolyte fuel cells, J. Electrochem. Soc. 140, 3513–3526 (1993)CrossRef
[26]
Zurück zum Zitat D.M. Bernardi, M.W. Verbrugge: Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte, Aiche J. 37, 1151–1163 (1991)CrossRef D.M. Bernardi, M.W. Verbrugge: Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte, Aiche J. 37, 1151–1163 (1991)CrossRef
[27]
Zurück zum Zitat I. Inchem: Chemical Safety Information from Intergovernmental Organizations (WHO, Geneva 2011), IPCS INCHEM I. Inchem: Chemical Safety Information from Intergovernmental Organizations (WHO, Geneva 2011), IPCS INCHEM
[28]
Zurück zum Zitat R.H. Perry, D.W. Green: Perry’s Chemical Engineers’ Handbook, 6th edn. (McGraw-Hill, New York 1984) R.H. Perry, D.W. Green: Perry’s Chemical Engineers’ Handbook, 6th edn. (McGraw-Hill, New York 1984)
[29]
Zurück zum Zitat M.S. Wilson, S. Gottesfeld: Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem. 22, 1–7 (1992)CrossRef M.S. Wilson, S. Gottesfeld: Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem. 22, 1–7 (1992)CrossRef
[30]
Zurück zum Zitat L. Gubler, G. Scherer: A proton-conducting polymer membrane as solid electrolyte – Function and required properties. In: Advances in Polymer Science, Vol. 215, ed. by G. Scherer (Springer, Berlin, Heidelberg 2008) pp. 1–14 L. Gubler, G. Scherer: A proton-conducting polymer membrane as solid electrolyte – Function and required properties. In: Advances in Polymer Science, Vol. 215, ed. by G. Scherer (Springer, Berlin, Heidelberg 2008) pp. 1–14
[31]
Zurück zum Zitat J. Xie, K.L. More, T.A. Zawodzinski, W.H. Smith: Porosimetry of MEAs made by Thin Film Decal method and its effect on performance of PEFCs, J. Electrochem. Soc. 151, A1841–A1846 (2004)CrossRef J. Xie, K.L. More, T.A. Zawodzinski, W.H. Smith: Porosimetry of MEAs made by Thin Film Decal method and its effect on performance of PEFCs, J. Electrochem. Soc. 151, A1841–A1846 (2004)CrossRef
[32]
Zurück zum Zitat E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua: Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, J. Power Sources 77, 136–142 (1999)CrossRef E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua: Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, J. Power Sources 77, 136–142 (1999)CrossRef
[33]
Zurück zum Zitat F.A. Howes, S. Whitaker: The spatial averaging theorem revisited, Chem. Eng. Sci. 40, 1387–1392 (1985)CrossRef F.A. Howes, S. Whitaker: The spatial averaging theorem revisited, Chem. Eng. Sci. 40, 1387–1392 (1985)CrossRef
[34]
Zurück zum Zitat P. De Vidts, R.E. White: Governing equations for transport in porous electrodes, J. Electrochem. Soc. 144, 1343–1353 (1997)CrossRef P. De Vidts, R.E. White: Governing equations for transport in porous electrodes, J. Electrochem. Soc. 144, 1343–1353 (1997)CrossRef
[35]
Zurück zum Zitat J. Newman, K.E. Thomas-Alyea: Electrochemical Systems, 3rd edn. (Wiley, New York 2004) J. Newman, K.E. Thomas-Alyea: Electrochemical Systems, 3rd edn. (Wiley, New York 2004)
[36]
Zurück zum Zitat R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena (Wiley, Chichester 1960) R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena (Wiley, Chichester 1960)
[37]
Zurück zum Zitat R. Krishna, J.A. Wesselingh: The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52, 861–911 (1997)CrossRef R. Krishna, J.A. Wesselingh: The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52, 861–911 (1997)CrossRef
[38]
Zurück zum Zitat H.S. Fogler: Elements of Chemical Reaction Engineering (Prentice Hall, Englewood Cliffs 2005) H.S. Fogler: Elements of Chemical Reaction Engineering (Prentice Hall, Englewood Cliffs 2005)
[39]
Zurück zum Zitat O. Levenspiel: Chemical Reaction Engineering, 3rd edn. (Wiley, Chichester 1999) O. Levenspiel: Chemical Reaction Engineering, 3rd edn. (Wiley, Chichester 1999)
[40]
Zurück zum Zitat D. Harvey, J.G. Pharoah, K. Karan: A comparison of different approaches to modelling the PEMFC catalyst layer, J. Power Sources 179, 209–219 (2008)CrossRef D. Harvey, J.G. Pharoah, K. Karan: A comparison of different approaches to modelling the PEMFC catalyst layer, J. Power Sources 179, 209–219 (2008)CrossRef
[41]
Zurück zum Zitat T. Vidakovic, M. Christov, K. Sundmacher: Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode, J. Electroanal. Chem. 580, 105–121 (2005)CrossRef T. Vidakovic, M. Christov, K. Sundmacher: Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode, J. Electroanal. Chem. 580, 105–121 (2005)CrossRef
[42]
Zurück zum Zitat U. Krewer, M. Christov, T. Vidakovic’, K. Sundmacher: Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics, J. Electroanal. Chem. 589, 148–159 (2006)CrossRef U. Krewer, M. Christov, T. Vidakovic’, K. Sundmacher: Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics, J. Electroanal. Chem. 589, 148–159 (2006)CrossRef
[43]
Zurück zum Zitat T. Vidakovic, M. Christov, K. Sundmacher: Investigation of electrochemical oxidation of methanol in a cyclone flow cell, Electrochimica Acta 49, 2179–2187 (2004)CrossRef T. Vidakovic, M. Christov, K. Sundmacher: Investigation of electrochemical oxidation of methanol in a cyclone flow cell, Electrochimica Acta 49, 2179–2187 (2004)CrossRef
[44]
Zurück zum Zitat B. Bensmann, M. Petkovska, T. Vidaković-Koch, R. Hanke-Rauschenbach, K. Sundmacher: Nonlinear frequency response of electrochemical methanol oxidation kinetics: A theoretical analysis, J. Electrochem. Soc. 157, B1279–B1289 (2010)CrossRef B. Bensmann, M. Petkovska, T. Vidaković-Koch, R. Hanke-Rauschenbach, K. Sundmacher: Nonlinear frequency response of electrochemical methanol oxidation kinetics: A theoretical analysis, J. Electrochem. Soc. 157, B1279–B1289 (2010)CrossRef
[45]
Zurück zum Zitat U. Krewer, T. Vidakovic-Koch, L. Rihko-Struckmann: Electrochemical oxidation of carbon containing fuels and their dynamics in low temperature fuel cells, ChemPhysChem 12, 2518–2544 (2011)CrossRef U. Krewer, T. Vidakovic-Koch, L. Rihko-Struckmann: Electrochemical oxidation of carbon containing fuels and their dynamics in low temperature fuel cells, ChemPhysChem 12, 2518–2544 (2011)CrossRef
[46]
Zurück zum Zitat P.S. Kauranen, E. Skou, J. Munk: Kinetics of methanol oxidation on carbon-supported Pt and Pt + Ru catalysts, J. Electroanal. Chem. 404, 1–13 (1996)CrossRef P.S. Kauranen, E. Skou, J. Munk: Kinetics of methanol oxidation on carbon-supported Pt and Pt + Ru catalysts, J. Electroanal. Chem. 404, 1–13 (1996)CrossRef
[47]
Zurück zum Zitat T.R. Vidaković-Koch, V.V. Panić, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part I. A theoretical analysis, J. Phys. Chem. C 115, 17341–17351 (2011)CrossRef T.R. Vidaković-Koch, V.V. Panić, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part I. A theoretical analysis, J. Phys. Chem. C 115, 17341–17351 (2011)CrossRef
[48]
Zurück zum Zitat V.V. Panić, T.R. Vidaković-Koch, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part II. Measurement routine and experimental validation, J. Phys. Chem. C 115, 17352–17358 (2011)CrossRef V.V. Panić, T.R. Vidaković-Koch, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part II. Measurement routine and experimental validation, J. Phys. Chem. C 115, 17352–17358 (2011)CrossRef
[49]
Zurück zum Zitat J.X. Wang, T.E. Springer, R.R. Adzic: Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes, J. Electrochem. Soc. 153, A1732–A1740 (2006)CrossRef J.X. Wang, T.E. Springer, R.R. Adzic: Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes, J. Electrochem. Soc. 153, A1732–A1740 (2006)CrossRef
[50]
Zurück zum Zitat M. Secanell, K. Karan, A. Suleman, N. Djilali: Optimal design of ultralow-platinum PEMFC anode electrodes, J. Electrochem. Soc. 155, B125–B134 (2008)CrossRef M. Secanell, K. Karan, A. Suleman, N. Djilali: Optimal design of ultralow-platinum PEMFC anode electrodes, J. Electrochem. Soc. 155, B125–B134 (2008)CrossRef
[51]
Zurück zum Zitat K. Broka, P. Ekdunge: Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem. 27, 281–289 (1997)CrossRef K. Broka, P. Ekdunge: Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem. 27, 281–289 (1997)CrossRef
[52]
Zurück zum Zitat D. Song, Q. Wang, Z. Liu, T. Navessin, M. Eikerling, S. Holdcroft: Numerical optimization study of the catalyst layer of PEM fuel cell cathode, J. Power Sources 126, 104–111 (2004)CrossRef D. Song, Q. Wang, Z. Liu, T. Navessin, M. Eikerling, S. Holdcroft: Numerical optimization study of the catalyst layer of PEM fuel cell cathode, J. Power Sources 126, 104–111 (2004)CrossRef
[53]
Zurück zum Zitat S.C. Barton: Oxygen transport in composite mediated biocathodes, Electrochimica Acta 50, 2145–2153 (2005)CrossRef S.C. Barton: Oxygen transport in composite mediated biocathodes, Electrochimica Acta 50, 2145–2153 (2005)CrossRef
[54]
Zurück zum Zitat D.-S. Chan, D.-J. Dai, H.-S. Wu: Dynamic modeling of anode function in enzyme-based biofuel cells using high mediator concentration, Energies 5, 2524–2544 (2012)CrossRef D.-S. Chan, D.-J. Dai, H.-S. Wu: Dynamic modeling of anode function in enzyme-based biofuel cells using high mediator concentration, Energies 5, 2524–2544 (2012)CrossRef
[55]
Zurück zum Zitat E. Fontes, C. Lagergren, D. Simonsson: Mathematical modelling of the MCFC cathode on the linear polarisation of the NiO cathode, J. Electroanal. Chem. 432, 121–128 (1997)CrossRef E. Fontes, C. Lagergren, D. Simonsson: Mathematical modelling of the MCFC cathode on the linear polarisation of the NiO cathode, J. Electroanal. Chem. 432, 121–128 (1997)CrossRef
[56]
Zurück zum Zitat J. Deseure, Y. Bultel, L. Dessemond, E. Siebert: Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta 50, 2037–2046 (2005)CrossRef J. Deseure, Y. Bultel, L. Dessemond, E. Siebert: Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta 50, 2037–2046 (2005)CrossRef
[57]
Zurück zum Zitat M.M. Hussain, X. Li, I. Dincer: Mathematical modeling of transport phenomena in porous SOFC anodes, Int. J. Thermal Sci. 46, 48–56 (2007)CrossRef M.M. Hussain, X. Li, I. Dincer: Mathematical modeling of transport phenomena in porous SOFC anodes, Int. J. Thermal Sci. 46, 48–56 (2007)CrossRef
[58]
Zurück zum Zitat M. Eikerling: Water management in cathode catalyst layers of PEM fuel cells: A structure-based model, J. Electrochem. Soc. 153, E58–E70 (2006)CrossRef M. Eikerling: Water management in cathode catalyst layers of PEM fuel cells: A structure-based model, J. Electrochem. Soc. 153, E58–E70 (2006)CrossRef
[59]
Zurück zum Zitat K. Wiezell, P. Gode, G. Lindbergh: Steady-state and EIS investigations of hydrogen electrodes and membranes in polymer electrolyte fuel cells: I. Modeling, J. Electrochem. Soc. 153, A749–A758 (2006)CrossRef K. Wiezell, P. Gode, G. Lindbergh: Steady-state and EIS investigations of hydrogen electrodes and membranes in polymer electrolyte fuel cells: I. Modeling, J. Electrochem. Soc. 153, A749–A758 (2006)CrossRef
[60]
Zurück zum Zitat P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, G. Sundholm: Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode, Electrochimica Acta 48, 4175–4187 (2003)CrossRef P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, G. Sundholm: Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode, Electrochimica Acta 48, 4175–4187 (2003)CrossRef
[61]
Zurück zum Zitat M. Sahraoui, C. Kharrat, K. Halouani: Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC, Int. J. of Hydrogen Energy 34, 3091–3103 (2009)CrossRef M. Sahraoui, C. Kharrat, K. Halouani: Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC, Int. J. of Hydrogen Energy 34, 3091–3103 (2009)CrossRef
[62]
Zurück zum Zitat S. Chupin, T. Colinart, S. Didierjean, Y. Dubé, K. Agbossou, G. Maranzana, O. Lottin: Numerical investigation of the impact of gas and cooling flow configurations on current and water distributions in a polymer membrane fuel cell through a pseudo-two-dimensional diphasic model, J. Power Sources 195, 5213–5227 (2010)CrossRef S. Chupin, T. Colinart, S. Didierjean, Y. Dubé, K. Agbossou, G. Maranzana, O. Lottin: Numerical investigation of the impact of gas and cooling flow configurations on current and water distributions in a polymer membrane fuel cell through a pseudo-two-dimensional diphasic model, J. Power Sources 195, 5213–5227 (2010)CrossRef
[63]
Zurück zum Zitat M. Secanell, K. Karan, A. Suleman, N. Djilali: Multi-variable optimization of PEMFC cathodes using an agglomerate model, Electrochimica Acta 52, 6318–6337 (2007)CrossRef M. Secanell, K. Karan, A. Suleman, N. Djilali: Multi-variable optimization of PEMFC cathodes using an agglomerate model, Electrochimica Acta 52, 6318–6337 (2007)CrossRef
[64]
Zurück zum Zitat R.M. Rao, D. Bhattacharyya, R. Rengaswamy, S.R. Choudhury: A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode, J. Power Sources 173, 375–393 (2007)CrossRef R.M. Rao, D. Bhattacharyya, R. Rengaswamy, S.R. Choudhury: A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode, J. Power Sources 173, 375–393 (2007)CrossRef
[65]
Zurück zum Zitat G. Lin, W. He, T. Van Nguyen: Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell, J. Electrochem. Soc. 151, A1999–A2006 (2004)CrossRef G. Lin, W. He, T. Van Nguyen: Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell, J. Electrochem. Soc. 151, A1999–A2006 (2004)CrossRef
[66]
Zurück zum Zitat W. Sun, B.A. Peppley, K. Karan: An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters, Electrochimica Acta 50, 3359–3374 (2005)CrossRef W. Sun, B.A. Peppley, K. Karan: An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters, Electrochimica Acta 50, 3359–3374 (2005)CrossRef
[67]
Zurück zum Zitat F. Jaouen, G. Lindbergh, G. Sundholm: Investigation of mass-transport limitations in the solid polymer fuel cell cathode I. Mathematical model, J. Electrochem. Soc. 149, A437–A447 (2002)CrossRef F. Jaouen, G. Lindbergh, G. Sundholm: Investigation of mass-transport limitations in the solid polymer fuel cell cathode I. Mathematical model, J. Electrochem. Soc. 149, A437–A447 (2002)CrossRef
[68]
Zurück zum Zitat P. Dobson, C. Lei, T. Navessin, M. Secanell: Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation, J. Electrochem. Soc. 159, B514–B523 (2012)CrossRef P. Dobson, C. Lei, T. Navessin, M. Secanell: Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation, J. Electrochem. Soc. 159, B514–B523 (2012)CrossRef
[69]
Zurück zum Zitat N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky: Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115, 81–89 (2003)CrossRef N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky: Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115, 81–89 (2003)CrossRef
[70]
Zurück zum Zitat J. Marquis, M.O. Coppens: Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure, Chemical Engineering Science 102, 151–162 (2013)CrossRef J. Marquis, M.O. Coppens: Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure, Chemical Engineering Science 102, 151–162 (2013)CrossRef
[71]
Zurück zum Zitat S. Kamarajugadda, S. Mazumder: Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance, J. Power Sources 183, 629–642 (2008)CrossRef S. Kamarajugadda, S. Mazumder: Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance, J. Power Sources 183, 629–642 (2008)CrossRef
[72]
Zurück zum Zitat T. Vidaković-Koch, V.K. Mittal, T.Q.N. Do, M. Varničić, K. Sundmacher: Application of electrochemical impedance spectroscopy for studying of enzyme kinetics, Electrochimica Acta 110, 94–104 (2013)CrossRef T. Vidaković-Koch, V.K. Mittal, T.Q.N. Do, M. Varničić, K. Sundmacher: Application of electrochemical impedance spectroscopy for studying of enzyme kinetics, Electrochimica Acta 110, 94–104 (2013)CrossRef
[73]
Zurück zum Zitat D. Gerteisen, A. Hakenjos, J.O. Schumacher: AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model, J. Power Sources 173, 346–356 (2007)CrossRef D. Gerteisen, A. Hakenjos, J.O. Schumacher: AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model, J. Power Sources 173, 346–356 (2007)CrossRef
[74]
Zurück zum Zitat Q. Guo, V.A. Sethuraman, R.E. White: Parameter estimates for a PEMFC cathode, J. Electrochem. Soc. 151, A983–A993 (2004)CrossRef Q. Guo, V.A. Sethuraman, R.E. White: Parameter estimates for a PEMFC cathode, J. Electrochem. Soc. 151, A983–A993 (2004)CrossRef
[75]
Zurück zum Zitat E.P. Walter, L. Pronzato: Identification of Parametric Models: From Experimental Data (Springer, Berlin, Heidelberg 1997)MATH E.P. Walter, L. Pronzato: Identification of Parametric Models: From Experimental Data (Springer, Berlin, Heidelberg 1997)MATH
[76]
Zurück zum Zitat D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, S. Holdcroft: A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells, Electrochimica Acta 50, 3347–3358 (2005)CrossRef D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, S. Holdcroft: A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells, Electrochimica Acta 50, 3347–3358 (2005)CrossRef
[77]
Zurück zum Zitat U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study, J. Electroanal. Chem. 495, 134–145 (2001)CrossRef U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study, J. Electroanal. Chem. 495, 134–145 (2001)CrossRef
[78]
Zurück zum Zitat P.K. Das, X. Li, Z.-S. Liu: Analytical approach to polymer electrolyte membrane fuel cell performance and optimization, J. Electroanal. Chem. 604, 72–90 (2007)CrossRef P.K. Das, X. Li, Z.-S. Liu: Analytical approach to polymer electrolyte membrane fuel cell performance and optimization, J. Electroanal. Chem. 604, 72–90 (2007)CrossRef
Metadaten
Titel
Catalyst Layer Modeling
verfasst von
Tanja Vidaković-Koch
Richard Hanke-Rauschenbach
Isaí Gonzalez Martínez
Kai Sundmacher
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_9