Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2020

24.04.2020 | ORIGINAL ARTICLE

Ensemble transfer learning for refining stability predictions in milling using experimental stability states

verfasst von: M. Postel, B. Bugdayci, K. Wegener

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new approach for updating model-based stability chart predictions in milling based on experimental data is presented. The approach utilizes Deep Neural Networks (DNNs), which are pre-trained with simulated data that is generated by predicting machine dynamics through receptance coupling and evaluating stability through an analytical stability model. The weights in the DNN are fine-tuned by re-training the networks with a small experimental dataset containing only a few dozen samples. Target is to match network predictions with the experimentally observed stability states acquired under different cutting conditions. The presented approach avoids measurement or model-based estimation of cutting force coefficients as well as the measurement of tooltip dynamics or extensive model parameter identification, making it an attractive approach for industrial applications. In an experimental validation, where stability charts for various engagement conditions and different tool clamping lengths are predicted, a good match between predictions and experimental stability limits is achieved. It is shown that an ensemble learning method, where predictions of multiple networks are combined, can improve prediction accuracy. Furthermore, it is demonstrated that the new approach requires approximately five times fewer experimental samples than previously proposed model-free machine learning approaches to reach the same prediction accuracy on a test set.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Budak E, Altintas¸ Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118(2):216–224CrossRef Budak E, Altintas¸ Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118(2):216–224CrossRef
2.
Zurück zum Zitat Altintas Y (2011) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, 2nd edn. Cambridge University Press, CambridgeCrossRef Altintas Y (2011) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, 2nd edn. Cambridge University Press, CambridgeCrossRef
3.
Zurück zum Zitat Grossi N (2017) Accurate and fast measurement of specific cutting force coefficients changing with spindle speed. Int J Precis Eng Manuf 18(8):1173–1180CrossRef Grossi N (2017) Accurate and fast measurement of specific cutting force coefficients changing with spindle speed. Int J Precis Eng Manuf 18(8):1173–1180CrossRef
4.
Zurück zum Zitat Rubeo MA, Schmitz TL (2016) Milling force modeling: a comparison of two approaches. Procedia Manufacturing 5:90–105CrossRef Rubeo MA, Schmitz TL (2016) Milling force modeling: a comparison of two approaches. Procedia Manufacturing 5:90–105CrossRef
5.
Zurück zum Zitat Campatelli G, Scippa A (2012) Prediction of milling cutting force coefficients for aluminum 6082-T4. Procedia CIRP 1:563–568CrossRef Campatelli G, Scippa A (2012) Prediction of milling cutting force coefficients for aluminum 6082-T4. Procedia CIRP 1:563–568CrossRef
6.
Zurück zum Zitat Schmitz TL, Donalson RR (2000) Predicting high-speed machining dynamics by substructure analysis. CIRP Ann 49(1):303–308CrossRef Schmitz TL, Donalson RR (2000) Predicting high-speed machining dynamics by substructure analysis. CIRP Ann 49(1):303–308CrossRef
7.
Zurück zum Zitat Schmitz TL, Davies MA, Kennedy MD (2001) Tool point frequency response prediction for high-speed machining by RCSA. J Manuf Sci Eng 123(4):700–707CrossRef Schmitz TL, Davies MA, Kennedy MD (2001) Tool point frequency response prediction for high-speed machining by RCSA. J Manuf Sci Eng 123(4):700–707CrossRef
8.
Zurück zum Zitat Park SS, Altintas Y, Movahhedy M (2003) Receptance coupling for end mills. Int J Mach Tools Manuf 43(9):889–896CrossRef Park SS, Altintas Y, Movahhedy M (2003) Receptance coupling for end mills. Int J Mach Tools Manuf 43(9):889–896CrossRef
9.
Zurück zum Zitat Namazi M, Altintas Y, Abe T, Rajapakse N (2007) Modeling and identification of tool holder–spindle interface dynamics. Int J Mach Tools Manuf 47(9):1333–1341CrossRef Namazi M, Altintas Y, Abe T, Rajapakse N (2007) Modeling and identification of tool holder–spindle interface dynamics. Int J Mach Tools Manuf 47(9):1333–1341CrossRef
10.
Zurück zum Zitat Albertelli P, Goletti M, Monno M (2013) A new receptance coupling substructure analysis methodology to improve chatter free cutting conditions prediction. Int J Mach Tools Manuf 72:16–24CrossRef Albertelli P, Goletti M, Monno M (2013) A new receptance coupling substructure analysis methodology to improve chatter free cutting conditions prediction. Int J Mach Tools Manuf 72:16–24CrossRef
11.
Zurück zum Zitat Kops L, Vo DT (1990) Determination of the equivalent diameter of an end mill based on its compliance. CIRP Ann 39(1):93–96CrossRef Kops L, Vo DT (1990) Determination of the equivalent diameter of an end mill based on its compliance. CIRP Ann 39(1):93–96CrossRef
12.
Zurück zum Zitat Ozsahin O, Altintas Y (2015) Prediction of frequency response function (FRF) of asymmetric tools from the analytical coupling of spindle and beam models of holder and tool. Int J Mach Tools Manuf 92:31–40CrossRef Ozsahin O, Altintas Y (2015) Prediction of frequency response function (FRF) of asymmetric tools from the analytical coupling of spindle and beam models of holder and tool. Int J Mach Tools Manuf 92:31–40CrossRef
13.
Zurück zum Zitat Yang Y, Zhang W-H, Ma Y-C, Wan M (2015) Generalized method for the analysis of bending, torsional and axial receptances of tool–holder–spindle assembly. Int J Mach Tools Manuf 99:48–67CrossRef Yang Y, Zhang W-H, Ma Y-C, Wan M (2015) Generalized method for the analysis of bending, torsional and axial receptances of tool–holder–spindle assembly. Int J Mach Tools Manuf 99:48–67CrossRef
14.
Zurück zum Zitat Matthias W, Özşahin O, Altintas Y, Denkena B (2016) Receptance coupling based algorithm for the identification of contact parameters at holder–tool interface. CIRP J Manuf Sci Technol 13:37–45CrossRef Matthias W, Özşahin O, Altintas Y, Denkena B (2016) Receptance coupling based algorithm for the identification of contact parameters at holder–tool interface. CIRP J Manuf Sci Technol 13:37–45CrossRef
15.
Zurück zum Zitat Özsahin O, Ertürk A, Özgüven HN, Budak E (2009) A closed-form approach for identification of dynamical contact parameters in spindle–holder–tool assemblies. Int J Mach Tools Manuf 49(1):25–35CrossRef Özsahin O, Ertürk A, Özgüven HN, Budak E (2009) A closed-form approach for identification of dynamical contact parameters in spindle–holder–tool assemblies. Int J Mach Tools Manuf 49(1):25–35CrossRef
16.
Zurück zum Zitat Matsubara A, Asano K, Muraki T (2015) Contactless dynamic tests for analyzing effects of speed and temperature on the natural frequency of a machine tool spindle High Speed Machining, 1 Matsubara A, Asano K, Muraki T (2015) Contactless dynamic tests for analyzing effects of speed and temperature on the natural frequency of a machine tool spindle High Speed Machining, 1
17.
Zurück zum Zitat Cao Y, Altintas Y (2005) A general method for the modeling of spindle-bearing systems. J Mech Des 126(6):1089–1104CrossRef Cao Y, Altintas Y (2005) A general method for the modeling of spindle-bearing systems. J Mech Des 126(6):1089–1104CrossRef
18.
Zurück zum Zitat Jamil N, Yusoff AR (2016) Electromagnetic actuator for determining frequency response functions of dynamic modal testing on milling tool. Measurement 82:355–366CrossRef Jamil N, Yusoff AR (2016) Electromagnetic actuator for determining frequency response functions of dynamic modal testing on milling tool. Measurement 82:355–366CrossRef
19.
Zurück zum Zitat Postel M, Bugdayci NB, Monnin J, Kuster F, Wegener K (2018) Improved stability predictions in milling through more realistic load conditions. Procedia CIRP 77:102–105CrossRef Postel M, Bugdayci NB, Monnin J, Kuster F, Wegener K (2018) Improved stability predictions in milling through more realistic load conditions. Procedia CIRP 77:102–105CrossRef
20.
Zurück zum Zitat Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49(12–13):947–957CrossRef Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49(12–13):947–957CrossRef
21.
Zurück zum Zitat Ozsahin O, Budak E, Ozguven HN (2015) In-process tool point FRF identification under operational conditions using inverse stability solution. Int J Mach Tools Manuf 89:64–73CrossRef Ozsahin O, Budak E, Ozguven HN (2015) In-process tool point FRF identification under operational conditions using inverse stability solution. Int J Mach Tools Manuf 89:64–73CrossRef
22.
Zurück zum Zitat Grossi N, Campatelli G (2016) Identification of machine tool dynamics under operational conditions, in Annual Meeting of the Machine Tool Technologies Research Foundation (MTTRF 2016): San Francisco, CA, USA Grossi N, Campatelli G (2016) Identification of machine tool dynamics under operational conditions, in Annual Meeting of the Machine Tool Technologies Research Foundation (MTTRF 2016): San Francisco, CA, USA
23.
Zurück zum Zitat Eynian M (2019) In-process identification of modal parameters using dimensionless relationships in milling chatter. Int J Mach Tools Manuf 143:49–62CrossRef Eynian M (2019) In-process identification of modal parameters using dimensionless relationships in milling chatter. Int J Mach Tools Manuf 143:49–62CrossRef
24.
Zurück zum Zitat Friedrich J, Hinze C, Renner A, Verl A, Lechler A (2017) Estimation of stability lobe diagrams in milling with continuous learning algorithms. Robot Comput Integr Manuf 43:124–134CrossRef Friedrich J, Hinze C, Renner A, Verl A, Lechler A (2017) Estimation of stability lobe diagrams in milling with continuous learning algorithms. Robot Comput Integr Manuf 43:124–134CrossRef
25.
Zurück zum Zitat Cherukuri H, Perez B, Selles M, Schmitz T (2019) Machining chatter prediction using a data learning model. J Manuf Mater Process 3:45 Cherukuri H, Perez B, Selles M, Schmitz T (2019) Machining chatter prediction using a data learning model. J Manuf Mater Process 3:45
26.
Zurück zum Zitat Budak E, Ertürk A, Özgüven HN (2006) A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics. CIRP Ann 55(1):369–372CrossRef Budak E, Ertürk A, Özgüven HN (2006) A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics. CIRP Ann 55(1):369–372CrossRef
27.
Zurück zum Zitat Park SS, Chae J (2008) Joint identification of modular tools using a novel receptance coupling method. Int J Adv Manuf Technol 35(11):1251–1262CrossRef Park SS, Chae J (2008) Joint identification of modular tools using a novel receptance coupling method. Int J Adv Manuf Technol 35(11):1251–1262CrossRef
28.
Zurück zum Zitat Ertürk A, Özgüven HN, Budak E (2007) Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle–tool assemblies. Int J Mach Tools Manuf 47(1):23–32CrossRef Ertürk A, Özgüven HN, Budak E (2007) Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle–tool assemblies. Int J Mach Tools Manuf 47(1):23–32CrossRef
29.
Zurück zum Zitat Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Control 120(1):22–30CrossRef Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Control 120(1):22–30CrossRef
30.
Zurück zum Zitat Liao J, Zhang J, Feng P, Yu D, Wu Z (2017) Identification of contact stiffness of shrink-fit tool-holder joint based on fractal theory. Int J Adv Manuf Technol 90(5):2173–2184CrossRef Liao J, Zhang J, Feng P, Yu D, Wu Z (2017) Identification of contact stiffness of shrink-fit tool-holder joint based on fractal theory. Int J Adv Manuf Technol 90(5):2173–2184CrossRef
31.
Zurück zum Zitat Mamedov A, Layegh KSE, Lazoglu I (2013) Machining forces and tool deflections in micro milling. Procedia CIRP 8:147–151CrossRef Mamedov A, Layegh KSE, Lazoglu I (2013) Machining forces and tool deflections in micro milling. Procedia CIRP 8:147–151CrossRef
32.
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press
33.
Zurück zum Zitat Friedrich J, Hinze C, Lechler A, Verl A (2016) On-line learning artificial neural networks for stability classification of milling processes. In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).P. 357-364 Friedrich J, Hinze C, Lechler A, Verl A (2016) On-line learning artificial neural networks for stability classification of milling processes. In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).P. 357-364
Metadaten
Titel
Ensemble transfer learning for refining stability predictions in milling using experimental stability states
verfasst von
M. Postel
B. Bugdayci
K. Wegener
Publikationsdatum
24.04.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05322-w

Weitere Artikel der Ausgabe 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.