Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

03.11.2021 | ORIGINAL ARTICLE

Prediction of surface roughness using machine learning approach for abrasive waterjet milling of alumina ceramic

verfasst von: Prabhu Ramesh, Kanthababu Mani

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work embodies the effect of abrasive waterjet milling process parameters on surface roughness in alumina ceramic material that is modelled with a machine learning approach. Experiments are carried out on the basis of response surface methodology (RSM) involving the Box–Behnken approach. The individual and interactive effects of the abrasive waterjet milling process parameters on surface roughness are studied through analysis of variance, and a quadratic regression model is developed. The combinations of abrasive waterjet milling input process parameters such as the pressure of 200 MPa, the step over of 0.2 mm, the abrasive flow rate of 0.42 kg/min and the traverse rate of 1000 mm/min have resulted in minimum surface roughness. In addition, the \(\varepsilon\)-support vector regression model of machine learning is developed to predict the surface roughness. To enhance the support vector regression model, its hyperparameters are tuned using grid search with fivefold cross-validation. The tuned hyperparameters are found to have the cost function \((C)\) of 5, \(\varepsilon\)-insensitive loss function of 0.0001, width of the radial basis function \((\gamma )\) of scale and radial basis kernel function. The support vector regression model (92.4%) has outperformed the quadratic regression model (70%) in the prediction of surface roughness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liang Y, Dutta SP (2001) Application trend in advanced ceramic technologies. Technovation 21(1):61–65CrossRef Liang Y, Dutta SP (2001) Application trend in advanced ceramic technologies. Technovation 21(1):61–65CrossRef
2.
Zurück zum Zitat Medvedovski E (2006) Alumina–mullite ceramics for structural applications. Ceram Int 32(4):369–375CrossRef Medvedovski E (2006) Alumina–mullite ceramics for structural applications. Ceram Int 32(4):369–375CrossRef
3.
Zurück zum Zitat Jagadish KG (2020) Abrasive water jet machining of engineering materials. Springer Jagadish KG (2020) Abrasive water jet machining of engineering materials. Springer
4.
Zurück zum Zitat Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer-Verlag, London LimitedCrossRef Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer-Verlag, London LimitedCrossRef
5.
Zurück zum Zitat Mohankumar V, Kanthababu M (2020) Semi-empirical model for depth of cut in abrasive waterjet machining of metal matrix composites. J Braz Soc Mech Sci Eng 42(10):1–7CrossRef Mohankumar V, Kanthababu M (2020) Semi-empirical model for depth of cut in abrasive waterjet machining of metal matrix composites. J Braz Soc Mech Sci Eng 42(10):1–7CrossRef
6.
Zurück zum Zitat Hlaváč LM, Hlaváčová IM, Gembalová L, Kaličinský J, Fabian S, Měšťánek J, Kmec J, Mádr V (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Process Technol 209(20):6190–6195CrossRef Hlaváč LM, Hlaváčová IM, Gembalová L, Kaličinský J, Fabian S, Měšťánek J, Kmec J, Mádr V (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Process Technol 209(20):6190–6195CrossRef
7.
Zurück zum Zitat Yao CF, Wu DX, Jin QC, Huang XC, Ren JX, Zhang DH (2013) Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy. Transactions of Nonferrous Metals Society of China 23(3):650–660CrossRef Yao CF, Wu DX, Jin QC, Huang XC, Ren JX, Zhang DH (2013) Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy. Transactions of Nonferrous Metals Society of China 23(3):650–660CrossRef
8.
Zurück zum Zitat Bagehorn S, Wehr J, Maier HJ (2017) Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue 102:135–142CrossRef Bagehorn S, Wehr J, Maier HJ (2017) Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue 102:135–142CrossRef
9.
Zurück zum Zitat Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard–brittle materials. Int J Mach Tools Manuf 49(7–8):569–578CrossRef Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard–brittle materials. Int J Mach Tools Manuf 49(7–8):569–578CrossRef
10.
Zurück zum Zitat Goutham U, Hasu BS, Chakraverti G, Kanthababu M (2016) Experimental investigation of pocket milling on Inconel 825 using abrasive water jet machining. International Journal of Current Engineering and Technology 6(1):295–302 Goutham U, Hasu BS, Chakraverti G, Kanthababu M (2016) Experimental investigation of pocket milling on Inconel 825 using abrasive water jet machining. International Journal of Current Engineering and Technology 6(1):295–302
11.
Zurück zum Zitat Yuan Y, Chen J, Gao H, Wang X (2020) An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int J Adv Manuf Technol 107(11–12):4503–4515CrossRef Yuan Y, Chen J, Gao H, Wang X (2020) An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int J Adv Manuf Technol 107(11–12):4503–4515CrossRef
12.
Zurück zum Zitat Hashish M (1998) Controlled-depth milling of isogrid structures with AWJs. J Manuf Sci Eng 120(1):21–27CrossRef Hashish M (1998) Controlled-depth milling of isogrid structures with AWJs. J Manuf Sci Eng 120(1):21–27CrossRef
13.
Zurück zum Zitat Shipway PH, Fowler G, Pashby IR (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear 258(1–4):123–132CrossRef Shipway PH, Fowler G, Pashby IR (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear 258(1–4):123–132CrossRef
14.
Zurück zum Zitat Gupta TV, Ramkumar J, Tandon P, Vyas NS (2013) Role of process parameters on pocket milling with abrasive water jet machining technique. International Journal of Mechanical and Mechatronics Engineering 7(10):348–353 Gupta TV, Ramkumar J, Tandon P, Vyas NS (2013) Role of process parameters on pocket milling with abrasive water jet machining technique. International Journal of Mechanical and Mechatronics Engineering 7(10):348–353
15.
Zurück zum Zitat Murugabalaji V, Kanthababu M, Jegaraj J, Saikumar S (2014) Multi-objective optimization of abrasive waterjet machining process parameters using particle swarm technique. International Journal of Materials Forming and Machining Processes 1(2):62–79CrossRef Murugabalaji V, Kanthababu M, Jegaraj J, Saikumar S (2014) Multi-objective optimization of abrasive waterjet machining process parameters using particle swarm technique. International Journal of Materials Forming and Machining Processes 1(2):62–79CrossRef
16.
Zurück zum Zitat Nareshbabu M, Muthukrishnan N (2014) Investigation on surface roughness in abrasive water-jet machining by the response surface method. Mater Manuf Processes 29(11–12):1422–1428CrossRef Nareshbabu M, Muthukrishnan N (2014) Investigation on surface roughness in abrasive water-jet machining by the response surface method. Mater Manuf Processes 29(11–12):1422–1428CrossRef
17.
Zurück zum Zitat Nguyen T, Wang J, Li W (2015) Process models for controlled-depth abrasive waterjet milling of amorphous glasses. The International Journal of Advanced Manufacturing Technology 77(5–8):1177–1189CrossRef Nguyen T, Wang J, Li W (2015) Process models for controlled-depth abrasive waterjet milling of amorphous glasses. The International Journal of Advanced Manufacturing Technology 77(5–8):1177–1189CrossRef
18.
Zurück zum Zitat Schwartzentruber J, Papini M (2015) Abrasive waterjet micro-piercing of borosilicate glass. J Mater Process Technol 219:143–154CrossRef Schwartzentruber J, Papini M (2015) Abrasive waterjet micro-piercing of borosilicate glass. J Mater Process Technol 219:143–154CrossRef
19.
Zurück zum Zitat Kanthababu M, Ram RM, Emannuel NP, Gokul R, Rammohan R (2016) Experimental investigations on pocket milling of titanium alloy using abrasive water jet machining. FME Transactions 44(2):133–138CrossRef Kanthababu M, Ram RM, Emannuel NP, Gokul R, Rammohan R (2016) Experimental investigations on pocket milling of titanium alloy using abrasive water jet machining. FME Transactions 44(2):133–138CrossRef
20.
Zurück zum Zitat Wensink H, Elwenspoek MC (2002) A closer look at the ductile–brittle transition in solid particle erosion. Wear 253(9–10):1035–1043CrossRef Wensink H, Elwenspoek MC (2002) A closer look at the ductile–brittle transition in solid particle erosion. Wear 253(9–10):1035–1043CrossRef
21.
Zurück zum Zitat Pal VK, Tandon P (2013) Identification of the role of machinability and milling depth on machining time in controlled depth milling using abrasive water jet. Int J Adv Manuf Technol 66(5–8):877–881CrossRef Pal VK, Tandon P (2013) Identification of the role of machinability and milling depth on machining time in controlled depth milling using abrasive water jet. Int J Adv Manuf Technol 66(5–8):877–881CrossRef
22.
Zurück zum Zitat Zhang F, Zhou T (2019) Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. J Intell Manuf 30(5):2217–2230CrossRef Zhang F, Zhou T (2019) Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. J Intell Manuf 30(5):2217–2230CrossRef
23.
Zurück zum Zitat Ramesh R, Kumar KR, Anil G (2009) Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines. Int J Adv Manuf Technol 42(11–12):1103–1117CrossRef Ramesh R, Kumar KR, Anil G (2009) Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines. Int J Adv Manuf Technol 42(11–12):1103–1117CrossRef
24.
Zurück zum Zitat Deris AM, Zain AM, Sallehuddin R (2013) Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining. Meccanica 48(8):1937–1945CrossRef Deris AM, Zain AM, Sallehuddin R (2013) Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining. Meccanica 48(8):1937–1945CrossRef
25.
Zurück zum Zitat Benkedjouh T, Medjaher K, Zerhouni N, Rechak S (2015) Health assessment and life prediction of cutting tools based on support vector regression. J Intell Manuf 26(2):213–223CrossRef Benkedjouh T, Medjaher K, Zerhouni N, Rechak S (2015) Health assessment and life prediction of cutting tools based on support vector regression. J Intell Manuf 26(2):213–223CrossRef
26.
Zurück zum Zitat Desu RK, Guntuku SC, Aditya B, Gupta AK (2014) Support vector regression based flow stress prediction in austenitic stainless steel 304. Procedia Materials Science 6:368–375CrossRef Desu RK, Guntuku SC, Aditya B, Gupta AK (2014) Support vector regression based flow stress prediction in austenitic stainless steel 304. Procedia Materials Science 6:368–375CrossRef
27.
Zurück zum Zitat Liang R, Yu R, Luo Y, Zhang Y (2019) Machine learning of weld joint penetration from weld pool surface using support vector regression. J Manuf Process 41:23–28CrossRef Liang R, Yu R, Luo Y, Zhang Y (2019) Machine learning of weld joint penetration from weld pool surface using support vector regression. J Manuf Process 41:23–28CrossRef
28.
Zurück zum Zitat Maalouf M, Khoury N, Laguros JG, Kumin H (2012) Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles. Int J Numer Anal Meth Geomech 36(6):675–696CrossRef Maalouf M, Khoury N, Laguros JG, Kumin H (2012) Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles. Int J Numer Anal Meth Geomech 36(6):675–696CrossRef
29.
Zurück zum Zitat Jebadurai J, Peter JD (2017) SK-SVR: sigmoid kernel support vector regression based in-scale single image super-resolution. Pattern Recogn Lett 94:144–153CrossRef Jebadurai J, Peter JD (2017) SK-SVR: sigmoid kernel support vector regression based in-scale single image super-resolution. Pattern Recogn Lett 94:144–153CrossRef
30.
Zurück zum Zitat Cho S, Asfour S, Onar A, Kaundinya N (2005) Tool breakage detection using support vector machine learning in a milling process. Int J Mach Tools Manuf 45(3):241–249CrossRef Cho S, Asfour S, Onar A, Kaundinya N (2005) Tool breakage detection using support vector machine learning in a milling process. Int J Mach Tools Manuf 45(3):241–249CrossRef
31.
Zurück zum Zitat Kwon Y, Jeong MK, Omitaomu OA (2006) Adaptive support vector regression analysis of closed-loop inspection accuracy. Int J Mach Tools Manuf 46(6):603–610CrossRef Kwon Y, Jeong MK, Omitaomu OA (2006) Adaptive support vector regression analysis of closed-loop inspection accuracy. Int J Mach Tools Manuf 46(6):603–610CrossRef
32.
Zurück zum Zitat Balakrishna P, Raman S, Trafalis TB, Santosa B (2008) Support vector regression for determining the minimum zone sphericity. The International Journal of Advanced Manufacturing Technology 35(9–10):916–923CrossRef Balakrishna P, Raman S, Trafalis TB, Santosa B (2008) Support vector regression for determining the minimum zone sphericity. The International Journal of Advanced Manufacturing Technology 35(9–10):916–923CrossRef
33.
Zurück zum Zitat Qu H, Wu X, Liu Y, Feng Y, Tang S, Zhang S, Hu Y (2020) Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet. Powder Technol 367:427–442CrossRef Qu H, Wu X, Liu Y, Feng Y, Tang S, Zhang S, Hu Y (2020) Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet. Powder Technol 367:427–442CrossRef
34.
Zurück zum Zitat Yuan Y, Chen J, Gao H, Wang X (2020) An investigation into the abrasive waterjet milling circular pocket on titanium alloy. The International Journal of Advanced Manufacturing Technology 107(11):4503–4515CrossRef Yuan Y, Chen J, Gao H, Wang X (2020) An investigation into the abrasive waterjet milling circular pocket on titanium alloy. The International Journal of Advanced Manufacturing Technology 107(11):4503–4515CrossRef
Metadaten
Titel
Prediction of surface roughness using machine learning approach for abrasive waterjet milling of alumina ceramic
verfasst von
Prabhu Ramesh
Kanthababu Mani
Publikationsdatum
03.11.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-08052-9

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.