Skip to main content
Erschienen in: Computational Mechanics 1/2019

02.01.2019 | Original Paper

Variable-order fractional description of compression deformation of amorphous glassy polymers

verfasst von: Ruifan Meng, Deshun Yin, Corina S. Drapaca

Erschienen in: Computational Mechanics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the variable order fractional constitutive model is adopted to describe the compression deformation of amorphous glassy polymers. In order to keep the fractional order within the definition of viscoelasticity, a three-regions- fitting-method is proposed. By using this, the value of fractional order is found to be a constant in viscoelastic region, and decreases linearly in both strain softening and strain hardening regions. The corresponding mechanical property evolution revealed by fractional order is proved to be reasonable based on the molecular chains conflict theory. And a comparison study is conducted to show the advantage of using the variable order fractional model with higher accuracy and fewer parameters. It is then concluded that the variable order fractional calculus is an efficient tool to predict the compression deformation of amorphous glassy polymers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Matter 9:15–34CrossRef Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Matter 9:15–34CrossRef
2.
Zurück zum Zitat Müller S, Kästner M, Brummund J, Ulbricht V (2013) On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput Mech 51:999–1012MathSciNetCrossRefMATH Müller S, Kästner M, Brummund J, Ulbricht V (2013) On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput Mech 51:999–1012MathSciNetCrossRefMATH
5.
Zurück zum Zitat Valério D, Da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Signal Process 91:470–483CrossRefMATH Valério D, Da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Signal Process 91:470–483CrossRefMATH
6.
Zurück zum Zitat Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85:1815–1823MathSciNetCrossRefMATH Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85:1815–1823MathSciNetCrossRefMATH
7.
8.
Zurück zum Zitat Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131:763–767CrossRef Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131:763–767CrossRef
9.
Zurück zum Zitat Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl Math Model 40:398–406MathSciNetCrossRef Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl Math Model 40:398–406MathSciNetCrossRef
10.
Zurück zum Zitat Sudarkodi V, Basu S (2014) Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int J Plastic 56:139–155CrossRef Sudarkodi V, Basu S (2014) Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int J Plastic 56:139–155CrossRef
11.
Zurück zum Zitat Poluektov M, Van Dommelen JAW, Govaert LE, Yakimets I, Geers MGD (2013) Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate. Model Simul Mater Sci Eng 21:5015CrossRef Poluektov M, Van Dommelen JAW, Govaert LE, Yakimets I, Geers MGD (2013) Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate. Model Simul Mater Sci Eng 21:5015CrossRef
12.
Zurück zum Zitat Jabbari-Farouji S, Rottler J, Lame O, Makke A, Perez M, Barrat J (2015) Correlation of structure and mechanical response in solid-like polymers. J Phys: Condens Matter 27:194131 Jabbari-Farouji S, Rottler J, Lame O, Makke A, Perez M, Barrat J (2015) Correlation of structure and mechanical response in solid-like polymers. J Phys: Condens Matter 27:194131
13.
Zurück zum Zitat Mahajan DK, Basu S (2010) Investigations into the applicability of rubber elastic analogy to hardening in glassy polymers. Model Simul Mater Sci 18:025001CrossRef Mahajan DK, Basu S (2010) Investigations into the applicability of rubber elastic analogy to hardening in glassy polymers. Model Simul Mater Sci 18:025001CrossRef
14.
Zurück zum Zitat Nada H, Hara H, Tadano Y, Shizawa K (2015) Molecular chain plasticity model similar to crystal plasticity theory based on change in local free volume and FE simulation of glassy polymer. Int J Mech Sci 93:120–135CrossRef Nada H, Hara H, Tadano Y, Shizawa K (2015) Molecular chain plasticity model similar to crystal plasticity theory based on change in local free volume and FE simulation of glassy polymer. Int J Mech Sci 93:120–135CrossRef
15.
Zurück zum Zitat Jancar J, Hoy RS, Jancarova E, Zidek J (2015) Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 63:196–207CrossRef Jancar J, Hoy RS, Jancarova E, Zidek J (2015) Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 63:196–207CrossRef
16.
Zurück zum Zitat Van Melick H, Govaert LE, Raas B, Nauta WJ, Meijer H (2003) Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 44:1171–1179CrossRef Van Melick H, Govaert LE, Raas B, Nauta WJ, Meijer H (2003) Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 44:1171–1179CrossRef
17.
Zurück zum Zitat Vorselaars B, Lyulin AV, Michels M (2009) Microscopic mechanisms of strain hardening in glassy polymers. Macromolecules 42:5829–5842CrossRef Vorselaars B, Lyulin AV, Michels M (2009) Microscopic mechanisms of strain hardening in glassy polymers. Macromolecules 42:5829–5842CrossRef
18.
Zurück zum Zitat Van Melick H, Govaert LE, Meijer H (2003) On the origin of strain hardening in glassy polymers. Polymer 44:2493–2502CrossRef Van Melick H, Govaert LE, Meijer H (2003) On the origin of strain hardening in glassy polymers. Polymer 44:2493–2502CrossRef
19.
Zurück zum Zitat Hoy RS, Robbins MO (2006) Strain hardening of polymer glasses: effect of entanglement density, temperature, and rate. J Polym Sci, Part B: Polym Phys 44:3487–3500CrossRef Hoy RS, Robbins MO (2006) Strain hardening of polymer glasses: effect of entanglement density, temperature, and rate. J Polym Sci, Part B: Polym Phys 44:3487–3500CrossRef
20.
Zurück zum Zitat Nguyen V, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192–216CrossRef Nguyen V, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192–216CrossRef
21.
Zurück zum Zitat Voyiadjis GZ, Samadi-Dooki A (2016) Constitutive modeling of large inelastic deformation of amorphous polymers: free volume and shear transformation zone dynamics. J Appl Phys 119:225104CrossRef Voyiadjis GZ, Samadi-Dooki A (2016) Constitutive modeling of large inelastic deformation of amorphous polymers: free volume and shear transformation zone dynamics. J Appl Phys 119:225104CrossRef
22.
Zurück zum Zitat Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39:39–52CrossRef Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39:39–52CrossRef
23.
Zurück zum Zitat Zaïri F, Naït-Abdelaziz M, Gloaguen J, Lefebvre J (2011) A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. Int J Plastic 27:25–51CrossRef Zaïri F, Naït-Abdelaziz M, Gloaguen J, Lefebvre J (2011) A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. Int J Plastic 27:25–51CrossRef
24.
Zurück zum Zitat Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre J (2010) Constitutive modelling of the large inelastic deformation behaviour of rubber-toughened poly (methyl methacrylate): effects of strain rate, temperature and rubber-phase volume fraction. Model Simul Mater Sci 18:055004CrossRef Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre J (2010) Constitutive modelling of the large inelastic deformation behaviour of rubber-toughened poly (methyl methacrylate): effects of strain rate, temperature and rubber-phase volume fraction. Model Simul Mater Sci 18:055004CrossRef
25.
Zurück zum Zitat Voyiadjis GZ, Shojaei A, Li G (2012) A generalized coupled viscoplastic—viscodamage—viscohealing theory for glassy polymers. Int J Plast 28:21–45CrossRef Voyiadjis GZ, Shojaei A, Li G (2012) A generalized coupled viscoplastic—viscodamage—viscohealing theory for glassy polymers. Int J Plast 28:21–45CrossRef
26.
Zurück zum Zitat Bouvard J, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast 42:168–193CrossRef Bouvard J, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast 42:168–193CrossRef
27.
Zurück zum Zitat Klompen E, Engels T, Govaert LE, Meijer H (2005) Modeling of the postyield response of glassy polymers: influence of thermomechanical history. Macromolecules 38:6997–7008CrossRef Klompen E, Engels T, Govaert LE, Meijer H (2005) Modeling of the postyield response of glassy polymers: influence of thermomechanical history. Macromolecules 38:6997–7008CrossRef
28.
Zurück zum Zitat Kontou E, Katsourinis S (2016) Application of a fractional model for simulation of the viscoelastic functions of polymers. J Appl Polym Sci 133:43505CrossRef Kontou E, Katsourinis S (2016) Application of a fractional model for simulation of the viscoelastic functions of polymers. J Appl Polym Sci 133:43505CrossRef
29.
Zurück zum Zitat Müller S, Kästner M, Brummund J, Ulbricht V (2011) A nonlinear fractional viscoelastic material model for polymers. Comput Mater Sci 50:2938–2949CrossRef Müller S, Kästner M, Brummund J, Ulbricht V (2011) A nonlinear fractional viscoelastic material model for polymers. Comput Mater Sci 50:2938–2949CrossRef
30.
Zurück zum Zitat Xiao R, Sun HG, Chen W (2017) A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int J Nonlinear Mech 93:7–14CrossRef Xiao R, Sun HG, Chen W (2017) A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int J Nonlinear Mech 93:7–14CrossRef
31.
Zurück zum Zitat Almeida R, Torres DF (2013) An expansion formula with higher-order derivatives for fractional operators of variable order. Sci World J 2013:915437 Almeida R, Torres DF (2013) An expansion formula with higher-order derivatives for fractional operators of variable order. Sci World J 2013:915437
32.
Zurück zum Zitat Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356CrossRefMATH Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356CrossRefMATH
33.
Zurück zum Zitat Duan Y, Saigal A, Greif R, Zimmerman MA (2001) A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Polym Eng Sci 41:1322–1328CrossRef Duan Y, Saigal A, Greif R, Zimmerman MA (2001) A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Polym Eng Sci 41:1322–1328CrossRef
34.
Zurück zum Zitat Boyce MC, Arruda EM (1990) An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288–1298CrossRef Boyce MC, Arruda EM (1990) An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288–1298CrossRef
35.
Zurück zum Zitat Yu P, Yao X, Han Q, Zang S, Gu Y (2014) A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures. Polymer 55:6577–6593CrossRef Yu P, Yao X, Han Q, Zang S, Gu Y (2014) A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures. Polymer 55:6577–6593CrossRef
36.
Zurück zum Zitat Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44:7938–7954CrossRefMATH Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44:7938–7954CrossRefMATH
Metadaten
Titel
Variable-order fractional description of compression deformation of amorphous glassy polymers
verfasst von
Ruifan Meng
Deshun Yin
Corina S. Drapaca
Publikationsdatum
02.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1663-9

Weitere Artikel der Ausgabe 1/2019

Computational Mechanics 1/2019 Zur Ausgabe