Skip to main content
Erschienen in: Computational Mechanics 1/2020

19.03.2020 | Original Paper

Variational multiscale framework for cavitating flows

verfasst von: A. Bayram, A. Korobenko

Erschienen in: Computational Mechanics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical formulation for the modeling of turbulent cavitating flows is presented. The flow field is governed by the 3D, time-dependent Navier–Stokes equations for a compressible isothermal mixture. The Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) formulation is adopted to model the turbulent flow on moving domains with no-slip boundary conditions imposed weakly. The formulation is first tested on the cavitating flow over a 2D NACA0012 airfoil and compared to published numerical results. Next, the framework is applied to the benchmark problem for the flow over a hemispherical fore-body. The numerical results are compared to the reported experimental data, showing a good agreement over the range of cavitation numbers. Finally, the simulation of a hydrokinetic turbine in cavitating flow at a low cavitation number is presented in order to test the stability of the formulation and the capability to handle real engineering problems involving turbulent cavitating flows on moving domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70(1):2–9MATHCrossRef Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70(1):2–9MATHCrossRef
2.
Zurück zum Zitat Akins RE (1989) Measurements of surface pressures on an operating vertical-axis wind turbine. Sandia National Laboratories, SAND89-7051, Albuquerque, NM Akins RE (1989) Measurements of surface pressures on an operating vertical-axis wind turbine. Sandia National Laboratories, SAND89-7051, Albuquerque, NM
3.
Zurück zum Zitat Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012a) Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRef Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012a) Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRef
4.
Zurück zum Zitat Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012b) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRef Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012b) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRef
5.
Zurück zum Zitat Alfonsi G (2009) Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl Mech Rev 62(4):040802CrossRef Alfonsi G (2009) Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl Mech Rev 62(4):040802CrossRef
6.
Zurück zum Zitat Aliabadi S, Tu S, Watts M (2005) Simulation of hydrodynamic cavitating flows using stabilized finite element method. In: 43rd AIAA aerospace sciences meeting and exhibit, p 1288 Aliabadi S, Tu S, Watts M (2005) Simulation of hydrodynamic cavitating flows using stabilized finite element method. In: 43rd AIAA aerospace sciences meeting and exhibit, p 1288
7.
Zurück zum Zitat Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090MATHCrossRef Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090MATHCrossRef
8.
Zurück zum Zitat Bahaj A, Molland A, Chaplin J, Batten W (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32(3):407–426CrossRef Bahaj A, Molland A, Chaplin J, Batten W (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32(3):407–426CrossRef
9.
Zurück zum Zitat Bayram A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetMATHCrossRef Bayram A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetMATHCrossRef
10.
Zurück zum Zitat Bazilevs Y, Calo V, Cottrell J, Hughes T, Reali A, Scovazzi G (2007a) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201MathSciNetMATHCrossRef Bazilevs Y, Calo V, Cottrell J, Hughes T, Reali A, Scovazzi G (2007a) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201MathSciNetMATHCrossRef
11.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef
12.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetMATHCrossRef
13.
Zurück zum Zitat Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetMATHCrossRef Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetMATHCrossRef
14.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011a) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235MATHCrossRef Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011a) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235MATHCrossRef
15.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009b) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009b) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetMATHCrossRef
16.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253MATHCrossRef Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253MATHCrossRef
17.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetMATHCrossRef
18.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010a) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010a) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef
19.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010b) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010b) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetMATHCrossRef
20.
Zurück zum Zitat Bazilevs Y, Hughes T (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43(1):143–150MATHCrossRef Bazilevs Y, Hughes T (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43(1):143–150MATHCrossRef
21.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J (2015a) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783MATHCrossRef Bazilevs Y, Korobenko A, Deng X, Yan J (2015a) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783MATHCrossRef
22.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010CrossRef Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010CrossRef
23.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014a) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006CrossRef Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014a) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006CrossRef
24.
Zurück zum Zitat Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015b) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25:2349–2375MathSciNetMATHCrossRef Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015b) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25:2349–2375MathSciNetMATHCrossRef
25.
Zurück zum Zitat Bazilevs Y, Michler C, Calo V, Hughes T (2007b) Weak dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862MathSciNetMATHCrossRef Bazilevs Y, Michler C, Calo V, Hughes T (2007b) Weak dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862MathSciNetMATHCrossRef
26.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, HobokenMATHCrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, HobokenMATHCrossRef
27.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014b) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398MathSciNetMATHCrossRef Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014b) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398MathSciNetMATHCrossRef
28.
Zurück zum Zitat Bensow RE (2011) Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES. In: Second international symposium on marine propulsors, Hamburg, Germany Bensow RE (2011) Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES. In: Second international symposium on marine propulsors, Hamburg, Germany
29.
Zurück zum Zitat Brennen CE (2014) Cavitation and bubble dynamics. Cambridge University Press, CambridgeMATH Brennen CE (2014) Cavitation and bubble dynamics. Cambridge University Press, CambridgeMATH
30.
Zurück zum Zitat Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7):078001CrossRef Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7):078001CrossRef
31.
Zurück zum Zitat Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375MathSciNetMATHCrossRef Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375MathSciNetMATHCrossRef
32.
Zurück zum Zitat Coutier-Delgosha O, Fortes-Patella R, Reboud J-L (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng 125(1):38–45CrossRef Coutier-Delgosha O, Fortes-Patella R, Reboud J-L (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng 125(1):38–45CrossRef
33.
Zurück zum Zitat Delannoy Y (1990) Two phase flow approach in unsteady cavitation modelling. In: Proceedings of cavitation and multiphase flow forum, 1990 Delannoy Y (1990) Two phase flow approach in unsteady cavitation modelling. In: Proceedings of cavitation and multiphase flow forum, 1990
34.
Zurück zum Zitat Delannoy Y, Kueny J (1990) Cavity flow predictions based on the euler equations. ASME Cavitation Multi-Phase Flow Forum 109:153–158 Delannoy Y, Kueny J (1990) Cavity flow predictions based on the euler equations. ASME Cavitation Multi-Phase Flow Forum 109:153–158
35.
Zurück zum Zitat Frikha S, Coutier-Delgosha O, Astolfi JA (2008) Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section. Int J Rotating Mach 2008:146234CrossRef Frikha S, Coutier-Delgosha O, Astolfi JA (2008) Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section. Int J Rotating Mach 2008:146234CrossRef
36.
Zurück zum Zitat Gaggero S, Tani G, Viviani M, Conti F (2014) A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng 92:137–161CrossRef Gaggero S, Tani G, Viviani M, Conti F (2014) A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng 92:137–161CrossRef
37.
Zurück zum Zitat Goncalves E, Decaix J, Patella RF (2010) Unsteady simulation of cavitating flows in venturi. J Hydrodyn Ser B 22(5):753–758 Goncalves E, Decaix J, Patella RF (2010) Unsteady simulation of cavitating flows in venturi. J Hydrodyn Ser B 22(5):753–758
38.
Zurück zum Zitat Gopalan S, Katz J (2000) Flow structure and modeling issues in the closure region of attached cavitation. Phys Fluids 12(4):895–911MATHCrossRef Gopalan S, Katz J (2000) Flow structure and modeling issues in the closure region of attached cavitation. Phys Fluids 12(4):895–911MATHCrossRef
39.
40.
Zurück zum Zitat Guaily AG, Epstein M (2013) Boundary conditions for hyperbolic systems of partial differentials equations. J Adv Res 4(4):321–329CrossRef Guaily AG, Epstein M (2013) Boundary conditions for hyperbolic systems of partial differentials equations. J Adv Res 4(4):321–329CrossRef
41.
Zurück zum Zitat Guilmineau E, Deng G, Leroyer A, Queutey P, Visonneau M, Wackers J (2015) Influence of the turbulence closures for the wake prediction of a marine propeller. In: Proceedings of the 4th international symposium on marine propulsors, SMP’15, Austin, TX, USA, 31 May–4 June, 2015 Guilmineau E, Deng G, Leroyer A, Queutey P, Visonneau M, Wackers J (2015) Influence of the turbulence closures for the wake prediction of a marine propeller. In: Proceedings of the 4th international symposium on marine propulsors, SMP’15, Austin, TX, USA, 31 May–4 June, 2015
42.
Zurück zum Zitat Helgedagsrud T, Bazilevs Y, Mathisen K, Oiseth O (2018a) Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech. Published online Helgedagsrud T, Bazilevs Y, Mathisen K, Oiseth O (2018a) Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech. Published online
43.
Zurück zum Zitat Helgedagsrud TA, Bazilevs Y, Korobenko A, Mathisen KM, Oiseth OA (2018b) Using ALE-VMS to compute aerodynamic derivatives of bridge sections. Comput Fluids. Published online Helgedagsrud TA, Bazilevs Y, Korobenko A, Mathisen KM, Oiseth OA (2018b) Using ALE-VMS to compute aerodynamic derivatives of bridge sections. Comput Fluids. Published online
44.
Zurück zum Zitat Helgedagsrud TA, Bazilevs Y, Mathisen KM, Oiseth OA (2018c) Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech. Published online Helgedagsrud TA, Bazilevs Y, Mathisen KM, Oiseth OA (2018c) Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech. Published online
45.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRef Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRef
46.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2014a) Finite element simulation of wind turbine aerodynamics: validation study using NREL phase VI experiment. Wind Energy 17:461–481CrossRef Hsu M-C, Akkerman I, Bazilevs Y (2014a) Finite element simulation of wind turbine aerodynamics: validation study using NREL phase VI experiment. Wind Energy 17:461–481CrossRef
47.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef
48.
Zurück zum Zitat Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJ (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840MathSciNetMATHCrossRef Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJ (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840MathSciNetMATHCrossRef
49.
Zurück zum Zitat Hsu M-C, Kamensky D (2018) Immersogeometric analysis of bioprosthetic heart valves, using the dynamic augmented Lagrangian method. In: Frontiers in computational fluid–structure interaction and flow simulation. Springer International Publishing, Cham, pp 167–212CrossRef Hsu M-C, Kamensky D (2018) Immersogeometric analysis of bioprosthetic heart valves, using the dynamic augmented Lagrangian method. In: Frontiers in computational fluid–structure interaction and flow simulation. Springer International Publishing, Cham, pp 167–212CrossRef
50.
Zurück zum Zitat Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014b) Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetMATHCrossRef Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014b) Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetMATHCrossRef
51.
Zurück zum Zitat Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225MATHCrossRef Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225MATHCrossRef
52.
Zurück zum Zitat Hughes TJ, Franca LP, Balestra M (1986a) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1):85–99MATHCrossRef Hughes TJ, Franca LP, Balestra M (1986a) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1):85–99MATHCrossRef
53.
Zurück zum Zitat Hughes TJ, Mallet M, Akira M (1986b) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355MathSciNetMATHCrossRef Hughes TJ, Mallet M, Akira M (1986b) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355MathSciNetMATHCrossRef
54.
Zurück zum Zitat Hughes TJ, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59MATHCrossRef Hughes TJ, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59MATHCrossRef
55.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetMATHCrossRef Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetMATHCrossRef
56.
Zurück zum Zitat Kamensky D, Evans JA, Hsu M-C, Bazilevs Y (2017) Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling. Comput Math Appl 74(9):2068–2088MathSciNetMATHCrossRef Kamensky D, Evans JA, Hsu M-C, Bazilevs Y (2017) Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling. Comput Math Appl 74(9):2068–2088MathSciNetMATHCrossRef
57.
Zurück zum Zitat Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetMATHCrossRef Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetMATHCrossRef
58.
Zurück zum Zitat Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546MathSciNetMATHCrossRef Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546MathSciNetMATHCrossRef
59.
Zurück zum Zitat Kanai T, Takizawa K, Tezduyar TE, Komiya K, Kaneko M, Hirota K, Nohmi M, Tsuneda T, Kawai M, Isono M (2019a) Methods for computation of flow-driven string dynamics in a pump and residence time. Math Models Methods Appl Sci 29:839–870MathSciNetMATHCrossRef Kanai T, Takizawa K, Tezduyar TE, Komiya K, Kaneko M, Hirota K, Nohmi M, Tsuneda T, Kawai M, Isono M (2019a) Methods for computation of flow-driven string dynamics in a pump and residence time. Math Models Methods Appl Sci 29:839–870MathSciNetMATHCrossRef
60.
Zurück zum Zitat Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019b) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321MathSciNetMATHCrossRef Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019b) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321MathSciNetMATHCrossRef
61.
Zurück zum Zitat Kawakami E, Arndt RE (2011) Investigation of the behavior of ventilated supercavities. J Fluids Eng 133(9):091305CrossRef Kawakami E, Arndt RE (2011) Investigation of the behavior of ventilated supercavities. J Fluids Eng 133(9):091305CrossRef
62.
Zurück zum Zitat Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: IOP conference series earth and environmental science, vol. 240, p 062014 Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: IOP conference series earth and environmental science, vol. 240, p 062014
63.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and Simulation in Science, Engineering and Technology. Springer, pp 253–336 Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and Simulation in Science, Engineering and Technology. Springer, pp 253–336
64.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2019) Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis. Arch Comput Methods Eng 26:1059–1099MathSciNetCrossRef Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2019) Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis. Arch Comput Methods Eng 26:1059–1099MathSciNetCrossRef
65.
Zurück zum Zitat Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013a) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011CrossRef Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013a) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011CrossRef
66.
Zurück zum Zitat Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013b) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetMATHCrossRef Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013b) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetMATHCrossRef
67.
Zurück zum Zitat Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175MathSciNetMATHCrossRef Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175MathSciNetMATHCrossRef
68.
Zurück zum Zitat Kubota A, Kato H, Yamaguchi H (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 240:59–96CrossRef Kubota A, Kato H, Yamaguchi H (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 240:59–96CrossRef
69.
Zurück zum Zitat Kunz RF, Boger DA, Chyczewski TS, Stinebring D, Gibeling H, Govindan T (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: 3rd ASME/JSME joint fluids engineering conference, San Francisco. Vol. 1. p 1 Kunz RF, Boger DA, Chyczewski TS, Stinebring D, Gibeling H, Govindan T (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: 3rd ASME/JSME joint fluids engineering conference, San Francisco. Vol. 1. p 1
70.
Zurück zum Zitat Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan T (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29(8):849–875MATHCrossRef Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan T (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29(8):849–875MATHCrossRef
71.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 337–376 Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 337–376
72.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2019a) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64:1699–1718MATHCrossRef Kuraishi T, Takizawa K, Tezduyar TE (2019a) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64:1699–1718MATHCrossRef
73.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2019b) Space-time Isogeometric flow analysis with built-in Reynolds-equation limit. Math Models Methods Appl Sci 29:871–904MathSciNetMATHCrossRef Kuraishi T, Takizawa K, Tezduyar TE (2019b) Space-time Isogeometric flow analysis with built-in Reynolds-equation limit. Math Models Methods Appl Sci 29:871–904MathSciNetMATHCrossRef
74.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2019c) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185MathSciNetMATHCrossRef Kuraishi T, Takizawa K, Tezduyar TE (2019c) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185MathSciNetMATHCrossRef
75.
Zurück zum Zitat Lee C-H, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu M-C, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y (2019) Mechanics of the tricuspid valve—from clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modeling. Bioengineering 6(2):47CrossRef Lee C-H, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu M-C, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y (2019) Mechanics of the tricuspid valve—from clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modeling. Bioengineering 6(2):47CrossRef
76.
Zurück zum Zitat Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M (2015) Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy 90:784–795CrossRef Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M (2015) Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy 90:784–795CrossRef
77.
Zurück zum Zitat Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Furukawa K (2014) Analysis of aerodynamic load on straight-bladed vertical axis wind turbine. J Therm Sci 23(4):315–324CrossRef Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Furukawa K (2014) Analysis of aerodynamic load on straight-bladed vertical axis wind turbine. J Therm Sci 23(4):315–324CrossRef
78.
Zurück zum Zitat Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014a) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919MathSciNetMATHCrossRef Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014a) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919MathSciNetMATHCrossRef
79.
Zurück zum Zitat Long CC, Marsden AL, Bazilevs Y (2013) Fluid-structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981MATHCrossRef Long CC, Marsden AL, Bazilevs Y (2013) Fluid-structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981MATHCrossRef
80.
Zurück zum Zitat Long CC, Marsden AL, Bazilevs Y (2014b) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932MathSciNetMATHCrossRef Long CC, Marsden AL, Bazilevs Y (2014b) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932MathSciNetMATHCrossRef
81.
Zurück zum Zitat Lu N-X, Bensow RE, Bark G (2010) LES of unsteady cavitation on the delft twisted foil. J Hydrodyn 22(1):742–749CrossRef Lu N-X, Bensow RE, Bark G (2010) LES of unsteady cavitation on the delft twisted foil. J Hydrodyn 22(1):742–749CrossRef
82.
Zurück zum Zitat Merkle CL (1998) Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd international symposium on cavitation, Grenoble, France, 1998 Merkle CL (1998) Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd international symposium on cavitation, Grenoble, France, 1998
84.
Zurück zum Zitat Niedźwiedzka A, Schnerr GH, Sobieski W (2016) Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch Thermodyn 37(2):71–88CrossRef Niedźwiedzka A, Schnerr GH, Sobieski W (2016) Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch Thermodyn 37(2):71–88CrossRef
85.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200MathSciNetMATHCrossRef Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200MathSciNetMATHCrossRef
86.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 399–434 Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 399–434
87.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019a) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419MathSciNetMATHCrossRef Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019a) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419MathSciNetMATHCrossRef
88.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019b) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776MathSciNetMATHCrossRef Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019b) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776MathSciNetMATHCrossRef
89.
Zurück zum Zitat Owis F, Nayfeh A (2001) Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. In: 39th Aerospace sciences meeting and exhibit, p 1042 Owis F, Nayfeh A (2001) Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. In: 39th Aerospace sciences meeting and exhibit, p 1042
90.
Zurück zum Zitat Owis FM, Nayfeh AH (2004) Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. Eur J Mech B/Fluids 23(2):339–351MATHCrossRef Owis FM, Nayfeh AH (2004) Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. Eur J Mech B/Fluids 23(2):339–351MATHCrossRef
91.
Zurück zum Zitat Pendar M-R, Roohi E (2018) Cavitation characteristics around a sphere: an LES investigation. Int J Multiph Flow 98:1–23MathSciNetCrossRef Pendar M-R, Roohi E (2018) Cavitation characteristics around a sphere: an LES investigation. Int J Multiph Flow 98:1–23MathSciNetCrossRef
92.
Zurück zum Zitat Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185MATHCrossRef Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185MATHCrossRef
93.
Zurück zum Zitat Ravensbergen M, Bayram A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetMATHCrossRef Ravensbergen M, Bayram A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetMATHCrossRef
94.
Zurück zum Zitat Rayleigh L (1917) Viii. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98MATHCrossRef Rayleigh L (1917) Viii. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98MATHCrossRef
95.
Zurück zum Zitat Reboud J-L, Stutz B, Coutier O (1998) Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: 3rd international symposium on cavitation CAV1998, Grenoble, France, Vol. 26 Reboud J-L, Stutz B, Coutier O (1998) Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: 3rd international symposium on cavitation CAV1998, Grenoble, France, Vol. 26
96.
Zurück zum Zitat Roohi E, Zahiri AP, Passandideh-Fard M (2013) Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl Math Model 37(9):6469–6488MathSciNetCrossRef Roohi E, Zahiri AP, Passandideh-Fard M (2013) Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl Math Model 37(9):6469–6488MathSciNetCrossRef
97.
Zurück zum Zitat Rouse H, McNown JS (1948) Cavitation and pressure distribution: head forms at zero angle of yaw. University of Iowa Studies in Engineering, 32. State University of Iowa Rouse H, McNown JS (1948) Cavitation and pressure distribution: head forms at zero angle of yaw. University of Iowa Studies in Engineering, 32. State University of Iowa
98.
Zurück zum Zitat Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM, PhiladelphiaMATHCrossRef Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM, PhiladelphiaMATHCrossRef
99.
Zurück zum Zitat Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, Vol. 1. ICMF New Orleans Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, Vol. 1. ICMF New Orleans
101.
Zurück zum Zitat Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617–624CrossRef Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617–624CrossRef
102.
Zurück zum Zitat Sipila T, Sanchez-Caja A, Siikonen T (2014) Eddy vorticity in cavitating tip vortices modelled by different turbulence models using the RANS approach. In: 11th World congress on computational mechanics (WCCM XI), pp 4741–4752 Sipila T, Sanchez-Caja A, Siikonen T (2014) Eddy vorticity in cavitating tip vortices modelled by different turbulence models using the RANS approach. In: 11th World congress on computational mechanics (WCCM XI), pp 4741–4752
103.
Zurück zum Zitat Song C (1998) Numerical simulation of cavitating flows by a single-phase flow approach. In: Third international symposium on cavitation, Grenoble, France, 1998 Song C (1998) Numerical simulation of cavitating flows by a single-phase flow approach. In: Third international symposium on cavitation, Grenoble, France, 1998
104.
Zurück zum Zitat Sreedhar B, Albert S, Pandit A (2017) Cavitation damage: theory and measurements—a review. Wear 372:177–196CrossRef Sreedhar B, Albert S, Pandit A (2017) Cavitation damage: theory and measurements—a review. Wear 372:177–196CrossRef
105.
Zurück zum Zitat Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045MATHCrossRef Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045MATHCrossRef
106.
Zurück zum Zitat Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 379–386 Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 379–386
107.
Zurück zum Zitat Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211MathSciNetCrossRef Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211MathSciNetCrossRef
108.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019a) Computational cardiovascular flow analysis with the variational multiscale methods. J Adv Eng Comput 3:366–405CrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019a) Computational cardiovascular flow analysis with the variational multiscale methods. J Adv Eng Comput 3:366–405CrossRef
109.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014a) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508MathSciNetMATHCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014a) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508MathSciNetMATHCrossRef
110.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014b) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486MathSciNetMATHCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014b) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486MathSciNetMATHCrossRef
111.
Zurück zum Zitat Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012a) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854CrossRef Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012a) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854CrossRef
112.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012b) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760MATHCrossRef Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012b) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760MATHCrossRef
113.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013a) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134MathSciNetMATHCrossRef Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013a) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134MathSciNetMATHCrossRef
114.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012c) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903MATHCrossRef Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012c) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903MATHCrossRef
115.
Zurück zum Zitat Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012d) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778MATHCrossRef Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012d) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778MATHCrossRef
116.
Zurück zum Zitat Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013b) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338MathSciNetMATHCrossRef Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013b) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338MathSciNetMATHCrossRef
117.
Zurück zum Zitat Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013c) Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248MathSciNetMATHCrossRef Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013c) Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248MathSciNetMATHCrossRef
118.
Zurück zum Zitat Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012e) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686MathSciNetMATHCrossRef Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012e) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686MathSciNetMATHCrossRef
119.
Zurück zum Zitat Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013d) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073MathSciNetMATHCrossRef Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013d) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073MathSciNetMATHCrossRef
120.
121.
Zurück zum Zitat Takizawa K, Tezduyar TE (2012a) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169MathSciNetMATHCrossRef Takizawa K, Tezduyar TE (2012a) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169MathSciNetMATHCrossRef
122.
Zurück zum Zitat Takizawa K, Tezduyar TE (2012b) Space-time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001MathSciNetMATHCrossRef Takizawa K, Tezduyar TE (2012b) Space-time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001MathSciNetMATHCrossRef
123.
Zurück zum Zitat Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 159–178 Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 159–178
124.
Zurück zum Zitat Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016a) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016a) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134MathSciNetMATHCrossRef
125.
Zurück zum Zitat Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013e) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364MATHCrossRef Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013e) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364MATHCrossRef
126.
Zurück zum Zitat Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014c) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220CrossRef Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014c) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220CrossRef
127.
Zurück zum Zitat Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015a) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069CrossRef Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015a) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069CrossRef
128.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A (2015b) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141CrossRef Takizawa K, Tezduyar TE, Buscher A (2015b) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141CrossRef
129.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014d) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973–986MATHCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014d) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973–986MATHCrossRef
130.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014e) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014e) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971MathSciNetMATHCrossRef
131.
Zurück zum Zitat Takizawa K, Tezduyar TE, Hattori H (2017a) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Hattori H (2017a) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117MathSciNetMATHCrossRef
132.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kanai T (2017b) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Kanai T (2017b) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806MathSciNetMATHCrossRef
133.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kolesar R (2015c) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179MATHCrossRef Takizawa K, Tezduyar TE, Kolesar R (2015c) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179MATHCrossRef
134.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014f) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014f) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476MathSciNetMATHCrossRef
135.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kostov N (2014g) Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233MathSciNetCrossRef Takizawa K, Tezduyar TE, Kostov N (2014g) Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233MathSciNetCrossRef
136.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kuraishi T (2015d) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Kuraishi T (2015d) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255MathSciNetMATHCrossRef
137.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016b) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016b) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977MathSciNetMATHCrossRef
138.
Zurück zum Zitat Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014h) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15MATHCrossRef Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014h) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15MATHCrossRef
139.
Zurück zum Zitat Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015e) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015e) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406MathSciNetMATHCrossRef
140.
Zurück zum Zitat Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017c) Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017c) Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20MathSciNetMATHCrossRef
141.
Zurück zum Zitat Takizawa K, Tezduyar TE, Terahara T (2016c) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Terahara T (2016c) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200MathSciNetMATHCrossRef
142.
Zurück zum Zitat Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017d) Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017d) Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188MathSciNetMATHCrossRef
143.
Zurück zum Zitat Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018a) Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture Notes in Applied and Computational Mechanics. Springer, pp 77–99 Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018a) Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture Notes in Applied and Computational Mechanics. Springer, pp 77–99
144.
Zurück zum Zitat Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018b) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 29–89 Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018b) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 29–89
145.
Zurück zum Zitat Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2019b) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids 179:790–798MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2019b) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids 179:790–798MathSciNetMATHCrossRef
146.
Zurück zum Zitat Tezduyar T, Park Y (1986) Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59(3):307–325MATHCrossRef Tezduyar T, Park Y (1986) Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59(3):307–325MATHCrossRef
147.
Zurück zum Zitat Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88MathSciNetMATH Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88MathSciNetMATH
148.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetMATH Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetMATH
149.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetMATHCrossRef Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetMATHCrossRef
150.
Zurück zum Zitat Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput fluids 36(2):191–206MathSciNetMATHCrossRef Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput fluids 36(2):191–206MathSciNetMATHCrossRef
151.
Zurück zum Zitat Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190(3–4):411–430MATHCrossRef Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190(3–4):411–430MATHCrossRef
152.
Zurück zum Zitat Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57(9):1189–1209MathSciNetMATHCrossRef Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57(9):1189–1209MathSciNetMATHCrossRef
153.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900MATHCrossRef Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900MATHCrossRef
154.
Zurück zum Zitat Tezduyar TE, Takizawa K (2019) Space-time computations in practical engineering applications: a summary of the 25-year history. Comput Mech 63:747–753MATHCrossRef Tezduyar TE, Takizawa K (2019) Space-time computations in practical engineering applications: a summary of the 25-year history. Comput Mech 63:747–753MATHCrossRef
156.
157.
Zurück zum Zitat Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer JL, Whitworth S, Macé R, Korsström A (2015) Cavitating flow calculations for the e779a propeller in open water and behind conditions: code comparison and solution validation. In: Proceedings of the 4th international symposium on marine propulsors (smp’15), Austin, TX, USA, pp 330–345 Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer JL, Whitworth S, Macé R, Korsström A (2015) Cavitating flow calculations for the e779a propeller in open water and behind conditions: code comparison and solution validation. In: Proceedings of the 4th international symposium on marine propulsors (smp’15), Austin, TX, USA, pp 330–345
158.
Zurück zum Zitat Viitanen V, Hynninen A, Sipilä T, Siikonen T (2018) DDES of wetted and cavitating marine propeller for CHA underwater noise assessment. J Mar Sci Eng 6(2):56CrossRef Viitanen V, Hynninen A, Sipilä T, Siikonen T (2018) DDES of wetted and cavitating marine propeller for CHA underwater noise assessment. J Mar Sci Eng 6(2):56CrossRef
159.
Zurück zum Zitat Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer, Berlin Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer, Berlin
160.
Zurück zum Zitat Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Comput Fluids 142:3–14MathSciNetMATHCrossRef Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Comput Fluids 142:3–14MathSciNetMATHCrossRef
161.
Zurück zum Zitat Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng 316:668–693MathSciNetMATHCrossRef Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng 316:668–693MathSciNetMATHCrossRef
162.
Zurück zum Zitat Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid–structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556MathSciNetMATHCrossRef Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid–structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556MathSciNetMATHCrossRef
163.
Zurück zum Zitat Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C (2018) An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves. J Biomech 74:23–31CrossRef Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C (2018) An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves. J Biomech 74:23–31CrossRef
164.
Zurück zum Zitat Xu F, Bazilevs Y, Hsu M-C (2019a) Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Math Models Methods Appl Sci 29(05):905–938MathSciNetMATHCrossRef Xu F, Bazilevs Y, Hsu M-C (2019a) Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Math Models Methods Appl Sci 29(05):905–938MathSciNetMATHCrossRef
165.
Zurück zum Zitat Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng 34(4):e2938MathSciNetCrossRef Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng 34(4):e2938MathSciNetCrossRef
166.
Zurück zum Zitat Xu S, Gao B, Hsu M-C, Ganapathysubramanian B (2019b) A residual-based variational multiscale method with weak imposition of boundary conditions for buoyancy-driven flows. Comput Methods Appl Mech Eng 352:345–368MathSciNetMATHCrossRef Xu S, Gao B, Hsu M-C, Ganapathysubramanian B (2019b) A residual-based variational multiscale method with weak imposition of boundary conditions for buoyancy-driven flows. Comput Methods Appl Mech Eng 352:345–368MathSciNetMATHCrossRef
167.
Zurück zum Zitat Xu S, Liu N, Yan J (2019c) Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains. Comput Fluids 188:114–124MathSciNetMATHCrossRef Xu S, Liu N, Yan J (2019c) Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains. Comput Fluids 188:114–124MathSciNetMATHCrossRef
168.
Zurück zum Zitat Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B (2019d) Immersogeometric analysis of moving objects in incompressible flows. Comput Fluids 189:24–33MathSciNetMATHCrossRef Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B (2019d) Immersogeometric analysis of moving objects in incompressible flows. Comput Fluids 189:24–33MathSciNetMATHCrossRef
169.
Zurück zum Zitat Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016a) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211MathSciNetMATHCrossRef Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016a) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211MathSciNetMATHCrossRef
170.
Zurück zum Zitat Yan J, Deng X, Korobenko A, Bazilevs Y (2017a) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetMATHCrossRef Yan J, Deng X, Korobenko A, Bazilevs Y (2017a) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetMATHCrossRef
171.
Zurück zum Zitat Yan J, Korobenko A, Deng X, Bazilevs Y (2016b) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetMATHCrossRef Yan J, Korobenko A, Deng X, Bazilevs Y (2016b) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetMATHCrossRef
172.
Zurück zum Zitat Yan J, Korobenko A, Tejada-Martinez A, Golshan R, Bazilevs Y (2017b) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156MathSciNetMATHCrossRef Yan J, Korobenko A, Tejada-Martinez A, Golshan R, Bazilevs Y (2017b) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156MathSciNetMATHCrossRef
173.
Zurück zum Zitat Yeckel A, Derby JJ (1999) On setting a pressure datum when computing incompressible flows. Int J Numer Methods Fluids 29(1):19–34MATHCrossRef Yeckel A, Derby JJ (1999) On setting a pressure datum when computing incompressible flows. Int J Numer Methods Fluids 29(1):19–34MATHCrossRef
174.
Zurück zum Zitat Yilmaz N, Atlar M, Khorasanchi M (2019) An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng 171:139–150CrossRef Yilmaz N, Atlar M, Khorasanchi M (2019) An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng 171:139–150CrossRef
175.
Zurück zum Zitat Yu Y, Zhang YJ, Takizawa K, Tezduyar TE, Sasaki T (2019) Anatomically realistic lumen motion representation in patient-specific space-time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Comput Mech 65:395–404MathSciNetCrossRef Yu Y, Zhang YJ, Takizawa K, Tezduyar TE, Sasaki T (2019) Anatomically realistic lumen motion representation in patient-specific space-time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Comput Mech 65:395–404MathSciNetCrossRef
176.
Zurück zum Zitat Zakerzadeh R, Hsu M-C, Sacks MS (2017) Computational methods for the aortic heart valve and its replacements. Expert Rev Med Devices 14(11):849–866CrossRef Zakerzadeh R, Hsu M-C, Sacks MS (2017) Computational methods for the aortic heart valve and its replacements. Expert Rev Med Devices 14(11):849–866CrossRef
177.
Zurück zum Zitat Zhu Q, Yan J (2019) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl. Accepted for publication Zhu Q, Yan J (2019) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl. Accepted for publication
178.
Zurück zum Zitat Zwart PJ, Gerber AG, Belamri T et al (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth international conference on multiphase flow, Yokohama, Japan, Vol. 152 Zwart PJ, Gerber AG, Belamri T et al (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth international conference on multiphase flow, Yokohama, Japan, Vol. 152
Metadaten
Titel
Variational multiscale framework for cavitating flows
verfasst von
A. Bayram
A. Korobenko
Publikationsdatum
19.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01840-2

Weitere Artikel der Ausgabe 1/2020

Computational Mechanics 1/2020 Zur Ausgabe