Skip to main content
Erschienen in: Neural Computing and Applications 5/2015

01.07.2015 | Original Article

Comparison of three unsupervised neural network models for first Painlevé Transcendent

verfasst von: Muhammad Asif Zahoor Raja, Junaid Ali Khan, Syed Muslim Shah, Raza Samar, Djilali Behloul

Erschienen in: Neural Computing and Applications | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a reliable soft computing framework is presented for the approximate solution of initial value problem (IVP) of first Painlevé equation using three unsupervised neural network models optimized with sequential quadratic programming (SQP). These mathematical models are constructed in the form of feed-forward architecture including log-sigmoid, radial base and tan-sigmoid activation functions in the hidden layers. The optimization of designed parameters for each model is performed with SQP, an efficient constraint optimization problem-solving algorithm. The designed methodology is tested on the IVP, and comparative study is carried out with standard solution based on numerical and analytical solvers. The accuracy, convergence and effectiveness of the schemes are validated on the given benchmark problem by large number of simulations and their comprehensive analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat He JH (1999) Variational iteration method, a kind of non-linear analytical technique, some examples. Int J Nonlin Mech 34(4):699–708MATHCrossRef He JH (1999) Variational iteration method, a kind of non-linear analytical technique, some examples. Int J Nonlin Mech 34(4):699–708MATHCrossRef
3.
Zurück zum Zitat He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int JModern Phys B 20(10):1144–1199 He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int JModern Phys B 20(10):1144–1199
4.
Zurück zum Zitat Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Studies in Applied Mathematics 4, Philadelphia Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Studies in Applied Mathematics 4, Philadelphia
5.
Zurück zum Zitat Turcotte DL, Spence DA, Bau HH (1982) Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int J Heat Mass Transfer 25(5):699–706MATHCrossRef Turcotte DL, Spence DA, Bau HH (1982) Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int J Heat Mass Transfer 25(5):699–706MATHCrossRef
6.
Zurück zum Zitat Haberman R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J Appl Math 37:69–106MATHMathSciNetCrossRef Haberman R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J Appl Math 37:69–106MATHMathSciNetCrossRef
7.
Zurück zum Zitat Fokas AS, Its AR, Kitaev AV (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm Math Phys 142(2):313–344MATHMathSciNetCrossRef Fokas AS, Its AR, Kitaev AV (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm Math Phys 142(2):313–344MATHMathSciNetCrossRef
9.
Zurück zum Zitat Tajiri M, Kawamoto Sh (1982) Reduction of KdV and cylindrical KdV equations to Painlevé equation. J Phys Soc Jpn 51:1678–1681MathSciNetCrossRef Tajiri M, Kawamoto Sh (1982) Reduction of KdV and cylindrical KdV equations to Painlevé equation. J Phys Soc Jpn 51:1678–1681MathSciNetCrossRef
12.
Zurück zum Zitat Olde Daalhuis AB (2005) Hyperasymptotics for nonlinear ODEs II. The first Painlevé equation and a second-order Riccati equation. Proc R Soc A 461:3005–3021 Olde Daalhuis AB (2005) Hyperasymptotics for nonlinear ODEs II. The first Painlevé equation and a second-order Riccati equation. Proc R Soc A 461:3005–3021
13.
Zurück zum Zitat Hesameddini E, Peyrovi A (2009) The use of variational iteration method and Homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871MATHMathSciNet Hesameddini E, Peyrovi A (2009) The use of variational iteration method and Homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871MATHMathSciNet
14.
Zurück zum Zitat Behzadi SS (2010) Convergence of iterative methods for solving Painlevé Equation. Appl Math Sci 4(30):1489–1507MATHMathSciNet Behzadi SS (2010) Convergence of iterative methods for solving Painlevé Equation. Appl Math Sci 4(30):1489–1507MATHMathSciNet
15.
Zurück zum Zitat Raja MAZ, Khan JA, Haroon T (2014) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks, particle swarm optimization and sequential quadratic programming. J Chem Inst Taiwan. doi:10.1016/j.jtice.2014.10.018 Raja MAZ, Khan JA, Haroon T (2014) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks, particle swarm optimization and sequential quadratic programming. J Chem Inst Taiwan. doi:10.​1016/​j.​jtice.​2014.​10.​018
16.
Zurück zum Zitat Khan JA, Raja MAZ, Qureshi IM (2011) Stochastic computational approach for complex non-linear ordinary differential equations. Chin Phys Lett 28(2):020206–020209MathSciNetCrossRef Khan JA, Raja MAZ, Qureshi IM (2011) Stochastic computational approach for complex non-linear ordinary differential equations. Chin Phys Lett 28(2):020206–020209MathSciNetCrossRef
17.
Zurück zum Zitat Yazdi, HS, Reza P (2010) Unsupervised adaptive neural-fuzzy inference system for solving differential equations. Appl Soft Comput 10.1:267–275 Yazdi, HS, Reza P (2010) Unsupervised adaptive neural-fuzzy inference system for solving differential equations. Appl Soft Comput 10.1:267–275
18.
Zurück zum Zitat Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol Oscillator. Int J Phys Sci 6(31):7247–7261. doi:10.5897/IJPS11.922 Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol Oscillator. Int J Phys Sci 6(31):7247–7261. doi:10.​5897/​IJPS11.​922
20.
Zurück zum Zitat Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of Nonlinear Emden-Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207MathSciNetCrossRef Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of Nonlinear Emden-Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207MathSciNetCrossRef
21.
Zurück zum Zitat Monterola Christopher, Saloma Caesar (2001) Solving the nonlinear Schrodinger equation with an unsupervised neural network. Opt Express 9(2):16CrossRef Monterola Christopher, Saloma Caesar (2001) Solving the nonlinear Schrodinger equation with an unsupervised neural network. Opt Express 9(2):16CrossRef
23.
Zurück zum Zitat Raja MAZ, Samar R (2014) Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput Fluids 91:28–46MathSciNetCrossRef Raja MAZ, Samar R (2014) Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput Fluids 91:28–46MathSciNetCrossRef
27.
Zurück zum Zitat Raja MAZ (2014) Unsupervised neural networks for solving Troesch’s Problem. Chin Phys B 23(1):018903CrossRef Raja MAZ (2014) Unsupervised neural networks for solving Troesch’s Problem. Chin Phys B 23(1):018903CrossRef
28.
Zurück zum Zitat Raja MAZ, Ahmad SI, Samar r (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu Problem. Neural Comput Appl 23(7–8):2199–2210. doi:10.1007/s00521-012-1170-4 CrossRef Raja MAZ, Ahmad SI, Samar r (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu Problem. Neural Comput Appl 23(7–8):2199–2210. doi:10.​1007/​s00521-012-1170-4 CrossRef
29.
Zurück zum Zitat Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl. doi:10.1007/s00521-014-1641-x Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl. doi:10.​1007/​s00521-014-1641-x
30.
Zurück zum Zitat Raja MAZ, Ahmad S, Samar R (2014) Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput Appl. doi:10.1007/s00521-014-1664-3 Raja MAZ, Ahmad S, Samar R (2014) Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput Appl. doi:10.​1007/​s00521-014-1664-3
32.
Zurück zum Zitat Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2014) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.1016/j.asoc.2014.10.009 CrossRef Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2014) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.​1016/​j.​asoc.​2014.​10.​009 CrossRef
33.
Zurück zum Zitat Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62(10):3796–3811MATHMathSciNetCrossRef Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62(10):3796–3811MATHMathSciNetCrossRef
34.
Zurück zum Zitat Raja MAZ, Khan JA, Qureshi IM (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7:11 Raja MAZ, Khan JA, Qureshi IM (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7:11
35.
Zurück zum Zitat Raja MAZ, Khan JA, Qureshi IM (2010) Evolutionary computational intelligence in solving the fractional differential equations. Lecture Notes in Computer Science, vol 5990, part 1, Springer, ACIIDS Hue City, Vietnam, pp 231–240 Raja MAZ, Khan JA, Qureshi IM (2010) Evolutionary computational intelligence in solving the fractional differential equations. Lecture Notes in Computer Science, vol 5990, part 1, Springer, ACIIDS Hue City, Vietnam, pp 231–240
36.
Zurück zum Zitat Raja MAZ, Khan JA, Qureshi IM (2010) Heuristic computational approach using swarm intelligence in solving fractional differential equations. GECCO (Companion) 2010:2023–2026 Raja MAZ, Khan JA, Qureshi IM (2010) Heuristic computational approach using swarm intelligence in solving fractional differential equations. GECCO (Companion) 2010:2023–2026
37.
Zurück zum Zitat Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math Probl Eng 2011 Article ID 765075:01–18 Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math Probl Eng 2011 Article ID 765075:01–18
38.
Zurück zum Zitat Raja MAZ, Khan JA, Qureshi IM (2010) A new Stochastic approach for solution of Riccati Differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250MATHMathSciNetCrossRef Raja MAZ, Khan JA, Qureshi IM (2010) A new Stochastic approach for solution of Riccati Differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250MATHMathSciNetCrossRef
39.
Zurück zum Zitat Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2013) Numerical treatment of Painleve equation I using neural networks and stochastic solvers. In: Jordanov I, Jain LC (eds) Innovations in intelligent machines—3, SCI 442. Springer, Berlin, pp 103–117 Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2013) Numerical treatment of Painleve equation I using neural networks and stochastic solvers. In: Jordanov I, Jain LC (eds) Innovations in intelligent machines—3, SCI 442. Springer, Berlin, pp 103–117
40.
Zurück zum Zitat Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2012) Solution of the Painlevé Equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci ID 721867:10 Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2012) Solution of the Painlevé Equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci ID 721867:10
41.
Zurück zum Zitat Beidokhti RS, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346(9):898–913MATHMathSciNetCrossRef Beidokhti RS, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346(9):898–913MATHMathSciNetCrossRef
42.
Zurück zum Zitat Aarts LP, Veer PVD (2001) Neural network method for solving the partial differential equations. Neural Process Lett 14:261–271MATHCrossRef Aarts LP, Veer PVD (2001) Neural network method for solving the partial differential equations. Neural Process Lett 14:261–271MATHCrossRef
43.
Zurück zum Zitat Rarisi DR et al (2003) Solving differential equations with unsupervised neural networks. J Chem Eng Process 42:715–721CrossRef Rarisi DR et al (2003) Solving differential equations with unsupervised neural networks. J Chem Eng Process 42:715–721CrossRef
44.
Zurück zum Zitat Nocedal J, Wright SJ (1999) Numerical optimization, Springer Series in Operations Research. Springer, Berlin Nocedal J, Wright SJ (1999) Numerical optimization, Springer Series in Operations Research. Springer, Berlin
45.
Zurück zum Zitat Fletcher R (1987) Practical methods of optimization. Wiley, New York Fletcher R (1987) Practical methods of optimization. Wiley, New York
46.
Zurück zum Zitat Schittkowski K (1985) NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Ann Oper Res 5:485–500MathSciNetCrossRef Schittkowski K (1985) NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Ann Oper Res 5:485–500MathSciNetCrossRef
Metadaten
Titel
Comparison of three unsupervised neural network models for first Painlevé Transcendent
verfasst von
Muhammad Asif Zahoor Raja
Junaid Ali Khan
Syed Muslim Shah
Raza Samar
Djilali Behloul
Publikationsdatum
01.07.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 5/2015
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1774-y

Weitere Artikel der Ausgabe 5/2015

Neural Computing and Applications 5/2015 Zur Ausgabe

Premium Partner