Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 6/2019

04.07.2019 | ORIGINAL ARTICLE

Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization

verfasst von: Gajendra Singh, Anil Kumar Varma, Sadiya Almas, Anusua Jana, Prasenjit Mondal, Jeffrey Seay

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work deals with the study of kinetic evaluation and pyrolysis of waste milk packets (polyethylene) for oil production. Thermogravimetric analysis (TGA) of waste milk packets was conducted in an inert atmosphere with heating rates of 5, 10 and 20 °C min−1 to analyse its thermal degradation behaviour. Pyrolysis kinetic parameters consist of activation energy and pre-exponentiation factor, and thermodynamic parameters include changes in Gibb’s free energy, enthalpy and entropy which were computed by Kissinger–Akahira–Sunose (KAS), Ozawa–Flynn–Wall (OFW) and Coats–Redfern methods using TGA data. The mean value of activation energy for pyrolysis of waste milk packets computed by KAS and OFW methods was 175.36 and 177.94 kJ mol−1, respectively, and the pre-exponential factors were found to be in the range of 1.37 × 1013–1.54 × 1014 min−1. Thermal pyrolysis of waste milk packets was performed in a semi-batch pyrolysis reactor. The maximum yield of oil was obtained as 45 wt% at pyrolysis temperature of 500 °C. The oil was analysed by ultimate analysis, Fourier transform infrared spectroscopy (FTIR) and gas chromatography–mass spectrometry (GC–MS). Chemical compounds present in oil were mainly paraffins, naphthenes and olefins with carbon number range of C9–C18. The boiling point of oil was found in the range of 63–360 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Singh RK, Ruj B (2016) Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174:164–171CrossRef Singh RK, Ruj B (2016) Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174:164–171CrossRef
2.
Zurück zum Zitat Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913CrossRef Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913CrossRef
3.
Zurück zum Zitat Joshi CA, Seay JR (2016) An Appropriate technology based solution to convert waste plastic into fuel oil in underdeveloped regions. J Sustain Dev 9:133CrossRef Joshi CA, Seay JR (2016) An Appropriate technology based solution to convert waste plastic into fuel oil in underdeveloped regions. J Sustain Dev 9:133CrossRef
4.
Zurück zum Zitat Cakici AI, Yanik J, Uçar S, Karayildirim T, Anil H (2004) Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel. J Mater Cycles Waste Manag 6:20–26CrossRef Cakici AI, Yanik J, Uçar S, Karayildirim T, Anil H (2004) Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel. J Mater Cycles Waste Manag 6:20–26CrossRef
5.
Zurück zum Zitat North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28:1–8CrossRef North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28:1–8CrossRef
6.
Zurück zum Zitat Pinto F, Costa P, Gulyurtlu I, Cabrita I (1999) Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J Anal Appl Pyrolysis 51:39–55CrossRef Pinto F, Costa P, Gulyurtlu I, Cabrita I (1999) Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J Anal Appl Pyrolysis 51:39–55CrossRef
7.
Zurück zum Zitat Na JG, Jeong BH, Chung SH, Kim SS (2006) Pyrolysis of low-density polyethylene using synthetic catalysts produced from fly ash. J Mater Cycles Waste Manag 8(2):126–132CrossRef Na JG, Jeong BH, Chung SH, Kim SS (2006) Pyrolysis of low-density polyethylene using synthetic catalysts produced from fly ash. J Mater Cycles Waste Manag 8(2):126–132CrossRef
8.
Zurück zum Zitat Varma AK, Mondal P (2016) Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim 124:487–497CrossRef Varma AK, Mondal P (2016) Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim 124:487–497CrossRef
9.
Zurück zum Zitat Sivakumar P, Anbarasu K (2012) Catalytic pyrolysis of dairy industrial waste LDPE film into fuel. Int J Chem Res 3:52–55 Sivakumar P, Anbarasu K (2012) Catalytic pyrolysis of dairy industrial waste LDPE film into fuel. Int J Chem Res 3:52–55
10.
Zurück zum Zitat Patil L, Varma AK, Singh G, Mondal P (2018) Thermocatalytic degradation of high density polyethylene into liquid product. J Polym Environ 26:1920–1929CrossRef Patil L, Varma AK, Singh G, Mondal P (2018) Thermocatalytic degradation of high density polyethylene into liquid product. J Polym Environ 26:1920–1929CrossRef
11.
Zurück zum Zitat Hartulistiyoso E, Sigiro FA, Yulianto M (2015) Temperature distribution of the plastics pyrolysis process to produce fuel at 450 °C. Procedia Environ Sci 28:234–241CrossRef Hartulistiyoso E, Sigiro FA, Yulianto M (2015) Temperature distribution of the plastics pyrolysis process to produce fuel at 450 °C. Procedia Environ Sci 28:234–241CrossRef
12.
Zurück zum Zitat Lopez A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chem Eng J 173:62–71CrossRef Lopez A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chem Eng J 173:62–71CrossRef
13.
Zurück zum Zitat Encinar JM, González JF (2008) Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process Technol 89:678–686CrossRef Encinar JM, González JF (2008) Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process Technol 89:678–686CrossRef
14.
Zurück zum Zitat Silvarrey LD, Phan AN (2016) Kinetic study of municipal plastic waste. Int J Hydrog Energy 41:16352–16364CrossRef Silvarrey LD, Phan AN (2016) Kinetic study of municipal plastic waste. Int J Hydrog Energy 41:16352–16364CrossRef
15.
Zurück zum Zitat Miteva K, Slavcho A, Bogoeva-Gaceva G (2016) Kinetic analysis of pyrolysis of waste polyolefin mixture. Arab J Sci Eng 41:2601–2609CrossRef Miteva K, Slavcho A, Bogoeva-Gaceva G (2016) Kinetic analysis of pyrolysis of waste polyolefin mixture. Arab J Sci Eng 41:2601–2609CrossRef
16.
Zurück zum Zitat Aboulkas A, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag 51:1363–1369CrossRef Aboulkas A, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag 51:1363–1369CrossRef
17.
Zurück zum Zitat Al-Salem SM, Lettieri P (2010) Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem Eng Res Des 88:1599–1606CrossRef Al-Salem SM, Lettieri P (2010) Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem Eng Res Des 88:1599–1606CrossRef
18.
Zurück zum Zitat Brems A, Baeyens J, Beerlandt J, Dewil R (2011) Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 55:772–781CrossRef Brems A, Baeyens J, Beerlandt J, Dewil R (2011) Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 55:772–781CrossRef
19.
Zurück zum Zitat Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14:233–248CrossRef Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14:233–248CrossRef
20.
Zurück zum Zitat Miskolczi N, Bartha L, Deák G, Jover B, Kallo D (2004) Thermal and thermo-catalytic degradation of high-density polyethylene waste. J Anal Appl Pyrolysis 72:235–242CrossRef Miskolczi N, Bartha L, Deák G, Jover B, Kallo D (2004) Thermal and thermo-catalytic degradation of high-density polyethylene waste. J Anal Appl Pyrolysis 72:235–242CrossRef
21.
Zurück zum Zitat Karaduman A, Şimşek EH (2001) Thermal degradation mechanism of low-density polyethylene plastic wastes in cyclohexane. J Polym Environ 9:85–90CrossRef Karaduman A, Şimşek EH (2001) Thermal degradation mechanism of low-density polyethylene plastic wastes in cyclohexane. J Polym Environ 9:85–90CrossRef
22.
Zurück zum Zitat Varma AK, Mondal P (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Res Technol 138:052205CrossRef Varma AK, Mondal P (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Res Technol 138:052205CrossRef
23.
Zurück zum Zitat Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi IA, Qadir G (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713CrossRef Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi IA, Qadir G (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713CrossRef
24.
Zurück zum Zitat Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS (2017) Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24CrossRef Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS (2017) Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24CrossRef
25.
Zurück zum Zitat Kim YS, Kim YS, Kim SH (2010) Investigation of thermodynamic parameters in the thermal decomposition of plastic waste–waste lube oil compounds. Environ Sci Technol 44:5313–5317CrossRef Kim YS, Kim YS, Kim SH (2010) Investigation of thermodynamic parameters in the thermal decomposition of plastic waste–waste lube oil compounds. Environ Sci Technol 44:5313–5317CrossRef
26.
Zurück zum Zitat Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493CrossRef Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493CrossRef
27.
Zurück zum Zitat Ceamanos J, Mastral JF, Millera A, Aldea ME (2002) Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrolysis 65:93–110CrossRef Ceamanos J, Mastral JF, Millera A, Aldea ME (2002) Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrolysis 65:93–110CrossRef
28.
Zurück zum Zitat Gao Z, Amasaki I, Nakada M (2003) A thermogravimetric study on thermal degradation of polyethylene. J Anal Appl Pyrolysis 67:1–9CrossRef Gao Z, Amasaki I, Nakada M (2003) A thermogravimetric study on thermal degradation of polyethylene. J Anal Appl Pyrolysis 67:1–9CrossRef
29.
Zurück zum Zitat Kim SS, Kim S (2004) Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chem Eng J 98:53–60CrossRef Kim SS, Kim S (2004) Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chem Eng J 98:53–60CrossRef
30.
Zurück zum Zitat Wang J, Zhao H (2015) Thermogravimetric analysis of rubber glove pyrolysis by different iso-conversional methods. Waste Biomass Valor 6:527–533CrossRef Wang J, Zhao H (2015) Thermogravimetric analysis of rubber glove pyrolysis by different iso-conversional methods. Waste Biomass Valor 6:527–533CrossRef
Metadaten
Titel
Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization
verfasst von
Gajendra Singh
Anil Kumar Varma
Sadiya Almas
Anusua Jana
Prasenjit Mondal
Jeffrey Seay
Publikationsdatum
04.07.2019
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 6/2019
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-019-00891-9

Weitere Artikel der Ausgabe 6/2019

Journal of Material Cycles and Waste Management 6/2019 Zur Ausgabe