Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2017

22.09.2017 | Research Paper

A novel parameterization method for the topology optimization of metallic antenna design

verfasst von: Qi Wang, Renjing Gao, Shutian Liu

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, based on a tangential interpolation function and an adaptively increasing penalty-factor strategy (TIPS), a novel parameterization method with a self-penalization scheme aimed for the topology optimization of metallic antenna design is proposed. The topology description is based on the material distribution approach. The proposed tangential interpolation function aims to associate the material resistance with design variables, in which the material resistance is expressed in the arctangent scale and the arctangent resistance is interpolated with the design variables using the rational approximation of material properties. During the optimization process, a strategy with an adaptively increasing penalty factor is used to eliminate the remaining gray scale elements, as illustrated in examples, in the topology optimization based on the proposed tangential interpolation function. Design results of typical examples express the effectiveness of the proposed TIPS parameterization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)MATH Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)MATH
3.
Zurück zum Zitat Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23, 595–622 (2016)MathSciNetCrossRefMATH Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23, 595–622 (2016)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Villegas, F.J., Cwik, T., Rahmat-Samii, Y., et al.: A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 52, 2424–2435 (2004)CrossRef Villegas, F.J., Cwik, T., Rahmat-Samii, Y., et al.: A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 52, 2424–2435 (2004)CrossRef
5.
Zurück zum Zitat Koulouridis, S., Psychoudakis, D., Volakis, J.L.: Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans. Antennas Propag. 55, 594–603 (2007)CrossRef Koulouridis, S., Psychoudakis, D., Volakis, J.L.: Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans. Antennas Propag. 55, 594–603 (2007)CrossRef
6.
Zurück zum Zitat Ouedraogo, R.O., Rothwell, E.J., Diaz, A., et al.: In situ optimization of metamaterial-inspired loop antennas. IEEE Antennas Wirel. Propag. Lett. 9, 75–78 (2010)CrossRef Ouedraogo, R.O., Rothwell, E.J., Diaz, A., et al.: In situ optimization of metamaterial-inspired loop antennas. IEEE Antennas Wirel. Propag. Lett. 9, 75–78 (2010)CrossRef
7.
Zurück zum Zitat Ouedraogo, R.O., Tang, J., Fuchi, K., et al.: A tunable dual-band miniaturized monopole antenna for compact wireless devices. IEEE Antennas Wirel. Propag. Lett. 13, 1247–1250 (2014)CrossRef Ouedraogo, R.O., Tang, J., Fuchi, K., et al.: A tunable dual-band miniaturized monopole antenna for compact wireless devices. IEEE Antennas Wirel. Propag. Lett. 13, 1247–1250 (2014)CrossRef
8.
Zurück zum Zitat Tang, J., Ouedraogo, R.O., Rothwell, E.J., et al.: A continuously tunable miniaturized patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 1080–1083 (2014)CrossRef Tang, J., Ouedraogo, R.O., Rothwell, E.J., et al.: A continuously tunable miniaturized patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 1080–1083 (2014)CrossRef
9.
Zurück zum Zitat Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43, 589–596 (2011)MathSciNetCrossRefMATH Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43, 589–596 (2011)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Guest, J.K., Genut, L.C.S.: Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 81, 1019–1045 (2010)MATH Guest, J.K., Genut, L.C.S.: Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 81, 1019–1045 (2010)MATH
11.
Zurück zum Zitat Ruiter, M.J.D., Keulen, F.V.: Topology optimization using a topology description function. Struct. Multidiscip. Optim. 26, 406–416 (2004)CrossRef Ruiter, M.J.D., Keulen, F.V.: Topology optimization using a topology description function. Struct. Multidiscip. Optim. 26, 406–416 (2004)CrossRef
12.
Zurück zum Zitat Zhou, S., Li, W., Sun, G., et al.: A level-set procedure for the design of electromagnetic metamaterials. Opt. Express 18, 6693–6702 (2010) Zhou, S., Li, W., Sun, G., et al.: A level-set procedure for the design of electromagnetic metamaterials. Opt. Express 18, 6693–6702 (2010)
13.
Zurück zum Zitat Zhou, S., Li, W., Chen, Y., et al.: Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater. 59, 2624–2636 (2011)CrossRef Zhou, S., Li, W., Chen, Y., et al.: Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater. 59, 2624–2636 (2011)CrossRef
14.
Zurück zum Zitat Zhou, S., Li, W., Li, Q.: Level-set based topology optimization for electromagnetic dipole antenna design. J. Comput. Phys. 229, 6915–6930 (2010)MathSciNetCrossRefMATH Zhou, S., Li, W., Li, Q.: Level-set based topology optimization for electromagnetic dipole antenna design. J. Comput. Phys. 229, 6915–6930 (2010)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017)CrossRef Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017)CrossRef
16.
Zurück zum Zitat Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016) Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)
17.
Zurück zum Zitat Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef
18.
Zurück zum Zitat Zhang, W., Yuan, J., Zhang, J., et al.: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 53, 1243–1260 (2016)MathSciNetCrossRef Zhang, W., Yuan, J., Zhang, J., et al.: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 53, 1243–1260 (2016)MathSciNetCrossRef
19.
Zurück zum Zitat Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Zhang, W., Zhong, W., Guo, X.: Explicit layout control in optimal design of structural systems with multiple embedding components. Comput. Methods Appl. Mech. Eng. 290, 290–313 (2015)MathSciNetCrossRef Zhang, W., Zhong, W., Guo, X.: Explicit layout control in optimal design of structural systems with multiple embedding components. Comput. Methods Appl. Mech. Eng. 290, 290–313 (2015)MathSciNetCrossRef
21.
Zurück zum Zitat Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNetCrossRef Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Xu, S., Cai, Y., Cheng, G.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)MathSciNetCrossRefMATH Xu, S., Cai, Y., Cheng, G.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)MathSciNetCrossRefMATH
23.
24.
Zurück zum Zitat Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)CrossRefMATH Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)CrossRefMATH
25.
Zurück zum Zitat Diaz, A.R., Sigmund, O.: A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163–177 (2010)MathSciNetCrossRefMATH Diaz, A.R., Sigmund, O.: A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163–177 (2010)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Aage, N., Mortensen, N., Sigmund, O.: Topology optimization of metallic devices for microwave applications. Int. J. Numer. Methods Eng. 83, 228–248 (2010)MathSciNetMATH Aage, N., Mortensen, N., Sigmund, O.: Topology optimization of metallic devices for microwave applications. Int. J. Numer. Methods Eng. 83, 228–248 (2010)MathSciNetMATH
27.
Zurück zum Zitat Hassan, E., Wadbro, E., Berggren, M.: Topology optimization of metallic antennas. IEEE Trans. Antennas Propag. 62, 2488–2500 (2014)MathSciNetCrossRefMATH Hassan, E., Wadbro, E., Berggren, M.: Topology optimization of metallic antennas. IEEE Trans. Antennas Propag. 62, 2488–2500 (2014)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Erentok, A., Sigmund, O.: Topology optimization of sub-wavelength antennas. IEEE Trans. Antennas Propag. 59, 58–69 (2011)CrossRef Erentok, A., Sigmund, O.: Topology optimization of sub-wavelength antennas. IEEE Trans. Antennas Propag. 59, 58–69 (2011)CrossRef
29.
Zurück zum Zitat Wadbro, E., Engström, C.: Topology and shape optimization of plasmonic nano-antennas. Comput. Methods Appl. Mech. Eng. 293, 155–169 (2015)MathSciNetCrossRef Wadbro, E., Engström, C.: Topology and shape optimization of plasmonic nano-antennas. Comput. Methods Appl. Mech. Eng. 293, 155–169 (2015)MathSciNetCrossRef
30.
Zurück zum Zitat Liu, S., Wang, Q., Gao, R.: A topology optimization method for design of small GPR antennas. Struct. Multidiscip. Optim. 50, 1165–1174 (2014)CrossRef Liu, S., Wang, Q., Gao, R.: A topology optimization method for design of small GPR antennas. Struct. Multidiscip. Optim. 50, 1165–1174 (2014)CrossRef
31.
Zurück zum Zitat Liu, S., Wang, Q., Gao, R.: MoM-based topology optimization method for planar metallic antenna design. Acta. Mech. Sin. 32, 1058–1064 (2016)MathSciNetCrossRefMATH Liu, S., Wang, Q., Gao, R.: MoM-based topology optimization method for planar metallic antenna design. Acta. Mech. Sin. 32, 1058–1064 (2016)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Harrington, R.F., Harrington, J.L.: Field Computation by Moment Methods. Oxford University Press, Oxford (1996)MATH Harrington, R.F., Harrington, J.L.: Field Computation by Moment Methods. Oxford University Press, Oxford (1996)MATH
33.
Zurück zum Zitat Makarov, S.: Antenna and EM Modeling with MATLAB. Princeton University Press, Princeton (2002) Makarov, S.: Antenna and EM Modeling with MATLAB. Princeton University Press, Princeton (2002)
34.
Zurück zum Zitat Davidson, D.B.: Computational Electromagnetics for RF and Microwave Engineering. Cambridge University Press, Cambridge (2010)CrossRef Davidson, D.B.: Computational Electromagnetics for RF and Microwave Engineering. Cambridge University Press, Cambridge (2010)CrossRef
35.
Zurück zum Zitat Rao, S.M., Wilton, D., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)CrossRef Rao, S.M., Wilton, D., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)CrossRef
36.
Zurück zum Zitat Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22, 116–124 (2001)CrossRef Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22, 116–124 (2001)CrossRef
37.
Zurück zum Zitat Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefMATH Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefMATH
Metadaten
Titel
A novel parameterization method for the topology optimization of metallic antenna design
verfasst von
Qi Wang
Renjing Gao
Shutian Liu
Publikationsdatum
22.09.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2017
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0709-0

Weitere Artikel der Ausgabe 6/2017

Acta Mechanica Sinica 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.