Skip to main content
Erschienen in: Autonomous Robots 6/2020

18.06.2020

Observability index optimization of robot calibration based on multiple identification spaces

verfasst von: Zhouxiang Jiang, Min Huang, Xiaoqi Tang, Bao Song, Yixuan Guo

Erschienen in: Autonomous Robots | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A calibration method is proposed for six-DoF serial robot based on multiple identification spaces consisting of two subspaces in which the orientations of joint 3 and poses of end-effector are measured simultaneously using hybrid sensors. The rotational geometric errors with higher sensitivities are identified in the first space while the rest are identified in the second. Compared with single identification space used in traditional methods, the number of geometric errors to be identified is reduced in each subspace. Thus the identification vectors corresponding to the geometric errors belonging to identification models can be better spaced. Simulation results show that the observability indices and identifiability are further improved by using the multiple identification spaces. Experimental results are also obtained from a six-DoF serial robot with laser tracker and IMUs to verify the identification accuracy improvement. Uncertainty analysis of each identification results is also provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Borm, J. H., & Menq, C. H. (1991). Determination of optimal measurement configurations for robot calibration based on observability measure. International Journal of Robotics Research,10, 51–63.CrossRef Borm, J. H., & Menq, C. H. (1991). Determination of optimal measurement configurations for robot calibration based on observability measure. International Journal of Robotics Research,10, 51–63.CrossRef
Zurück zum Zitat Cai, Y. Y., Gu, H., Li, C., & Liu, H. S. (2018). Easy industrial robot cell coordinates calibration with touch panel. Robotics and Computer-Integrated Manufacturing,50, 276–285.CrossRef Cai, Y. Y., Gu, H., Li, C., & Liu, H. S. (2018). Easy industrial robot cell coordinates calibration with touch panel. Robotics and Computer-Integrated Manufacturing,50, 276–285.CrossRef
Zurück zum Zitat Chen, G., Li, T., Chu, M., Jia, Q. X., & Sun, H. X. (2014a). Review on kinematics calibration technology of serial robots. International Journal of Precision Engineering and Manufacturing,15(8), 1759–1774.CrossRef Chen, G., Li, T., Chu, M., Jia, Q. X., & Sun, H. X. (2014a). Review on kinematics calibration technology of serial robots. International Journal of Precision Engineering and Manufacturing,15(8), 1759–1774.CrossRef
Zurück zum Zitat Chen, G. L., Wang, H., & Lin, Z. Q. (2014b). Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Transactions on Robotics,30(5), 1066–1077.CrossRef Chen, G. L., Wang, H., & Lin, Z. Q. (2014b). Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Transactions on Robotics,30(5), 1066–1077.CrossRef
Zurück zum Zitat Chen, X. Y., Zhang, Q. J., & Sun, Y. L. (2019). Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method. Robotics and Computer Integrated Manufacturing,57, 46–58.CrossRef Chen, X. Y., Zhang, Q. J., & Sun, Y. L. (2019). Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method. Robotics and Computer Integrated Manufacturing,57, 46–58.CrossRef
Zurück zum Zitat Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix,58(15–16), 1–35. Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix,58(15–16), 1–35.
Zurück zum Zitat Du, G. L., & Zhang, P. (2013). Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing,29, 484–492.CrossRef Du, G. L., & Zhang, P. (2013). Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing,29, 484–492.CrossRef
Zurück zum Zitat Du, G. L., Zhang, P., & Li, D. (2015). Online robot calibration based on hybrid sensors using Kalman Filters. Robotics and Computer-Integrated Manufacturing,31, 91–100.CrossRef Du, G. L., Zhang, P., & Li, D. (2015). Online robot calibration based on hybrid sensors using Kalman Filters. Robotics and Computer-Integrated Manufacturing,31, 91–100.CrossRef
Zurück zum Zitat Elatta, A. Y., Li, P. G., Fan, L. Z., & Yu, D. (2004). An overview of robot calibration. Information Technology Journal,3(1), 74–78.CrossRef Elatta, A. Y., Li, P. G., Fan, L. Z., & Yu, D. (2004). An overview of robot calibration. Information Technology Journal,3(1), 74–78.CrossRef
Zurück zum Zitat Filion, A., Joubair, A., Tahan, A. S., & Bonev, I. A. (2018). Robot calibration using a portable photogrammetry system. Robotics and Computer-Integrated Manufacturing,49, 77–87.CrossRef Filion, A., Joubair, A., Tahan, A. S., & Bonev, I. A. (2018). Robot calibration using a portable photogrammetry system. Robotics and Computer-Integrated Manufacturing,49, 77–87.CrossRef
Zurück zum Zitat He, R. B., Zhao, Y. J., Yang, S. N., & Yang, S. Z. (2010). Kinematic-parameter identification for serial-robot calibration based on POE formula. IEEE Transactions on Robotics,26(3), 411–423.CrossRef He, R. B., Zhao, Y. J., Yang, S. N., & Yang, S. Z. (2010). Kinematic-parameter identification for serial-robot calibration based on POE formula. IEEE Transactions on Robotics,26(3), 411–423.CrossRef
Zurück zum Zitat Hollerbach, J. M., & Wampler, C. W. (1996). The calibration index and taxonomy for robot kinematic calibration methods. International Journal of Robotics Research,15(6), 573–591.CrossRef Hollerbach, J. M., & Wampler, C. W. (1996). The calibration index and taxonomy for robot kinematic calibration methods. International Journal of Robotics Research,15(6), 573–591.CrossRef
Zurück zum Zitat Joubair, A., Tahan, A. S., & Bonev, I. A. (2016). Performances of observability indices for industrial robot calibration. In IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2477–2484. Joubair, A., Tahan, A. S., & Bonev, I. A. (2016). Performances of observability indices for industrial robot calibration. In IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2477–2484.
Zurück zum Zitat Klimchik, A., Furet, B., Caro, S., & Pashkevich, A. (2015). Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory,90, 1–22.CrossRef Klimchik, A., Furet, B., Caro, S., & Pashkevich, A. (2015). Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory,90, 1–22.CrossRef
Zurück zum Zitat Legnani, G., & Tiboni, M. (2014). Optimal design and application of a low-cost wire-sensor system for the kinematic calibration of industrial manipulators. Mechanism and Machine Theory,73, 25–48.CrossRef Legnani, G., & Tiboni, M. (2014). Optimal design and application of a low-cost wire-sensor system for the kinematic calibration of industrial manipulators. Mechanism and Machine Theory,73, 25–48.CrossRef
Zurück zum Zitat Li, T., Sun, K., Xie, Z. W., & Liu, H. (2011). Optimal measurement configurations for kinematic calibration of six-DOF serial robot. Journal of Central South University,18(3), 618–626.CrossRef Li, T., Sun, K., Xie, Z. W., & Liu, H. (2011). Optimal measurement configurations for kinematic calibration of six-DOF serial robot. Journal of Central South University,18(3), 618–626.CrossRef
Zurück zum Zitat Li, C., Wu, Y. Q., Lowe, H., & Li, Z. X. (2016). POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Transactions on Robotics,32(5), 1264–1279.CrossRef Li, C., Wu, Y. Q., Lowe, H., & Li, Z. X. (2016). POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Transactions on Robotics,32(5), 1264–1279.CrossRef
Zurück zum Zitat Li, J., Xie, F. G., Liu, X. J., Mei, B., & Li, H. J. (2018). A spatial vector projection based error sensitivity analysis method for industrial robots. Journal of Mechanical Science and Technology,32(6), 2839–2850.CrossRef Li, J., Xie, F. G., Liu, X. J., Mei, B., & Li, H. J. (2018). A spatial vector projection based error sensitivity analysis method for industrial robots. Journal of Mechanical Science and Technology,32(6), 2839–2850.CrossRef
Zurück zum Zitat Liu, Y. Z., Wu, J., Wang, L. P., & Wang, J. S. (2016). Measurement trajectory evaluation and error compensation for kinematic calibration of 5-axis hybrid machine tool. Journal of Tsinghua University,56(10), 1047–1054. Liu, Y. Z., Wu, J., Wang, L. P., & Wang, J. S. (2016). Measurement trajectory evaluation and error compensation for kinematic calibration of 5-axis hybrid machine tool. Journal of Tsinghua University,56(10), 1047–1054.
Zurück zum Zitat Ma, L., Bazzoli, P., & Sammons, P. M. (2018). Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robotics and Computer-Integrated Manufacturing,50, 153–167.CrossRef Ma, L., Bazzoli, P., & Sammons, P. M. (2018). Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robotics and Computer-Integrated Manufacturing,50, 153–167.CrossRef
Zurück zum Zitat Meggiolaro, M.A., & Dubowsky, S. (2000). An analytical method to eliminate the redundant parameters in robot calibration. In Proceedings of the 2000 IEEE lntemational conference on robotics & automation, pp. 3609–3615. Meggiolaro, M.A., & Dubowsky, S. (2000). An analytical method to eliminate the redundant parameters in robot calibration. In Proceedings of the 2000 IEEE lntemational conference on robotics & automation, pp. 3609–3615.
Zurück zum Zitat Menq, C. H., Borm, J. H., & Lai, J. Z. (1989). Identification and observability measure of a basis set of error parameters in robot calibration. ASME Journal Mechamissions, and Automation in Design,111, 513–518. Menq, C. H., Borm, J. H., & Lai, J. Z. (1989). Identification and observability measure of a basis set of error parameters in robot calibration. ASME Journal Mechamissions, and Automation in Design,111, 513–518.
Zurück zum Zitat Messay, T., Ordóñez, R., & Marcil, E. (2016). Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots. Robotics and Computer-Integrated Manufacturing,37, 33–48.CrossRef Messay, T., Ordóñez, R., & Marcil, E. (2016). Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots. Robotics and Computer-Integrated Manufacturing,37, 33–48.CrossRef
Zurück zum Zitat Mooring, B., Roth, Z., & Driels, M. (1991). Fundamentals of manipulator calibration. New York: Wiley. Mooring, B., Roth, Z., & Driels, M. (1991). Fundamentals of manipulator calibration. New York: Wiley.
Zurück zum Zitat Nahvi, A., & Hollerbach, J. M. (1996). The noise amplification index for optimal pose selection in robot calibration. In IEEE international conference on robotics and automation (Vol. 1(1), pp. 647–654). Nahvi, A., & Hollerbach, J. M. (1996). The noise amplification index for optimal pose selection in robot calibration. In IEEE international conference on robotics and automation (Vol. 1(1), pp. 647–654).
Zurück zum Zitat Nategh, M. J., & Agheli, M. M. (2009). A total solution to kinematic calibration of hexapod machine tools with a minimum number of measurement configurations and superior accuracies. International Journal of Machine Tools and Manufacture,49, 1155–1164.CrossRef Nategh, M. J., & Agheli, M. M. (2009). A total solution to kinematic calibration of hexapod machine tools with a minimum number of measurement configurations and superior accuracies. International Journal of Machine Tools and Manufacture,49, 1155–1164.CrossRef
Zurück zum Zitat Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing,29(1), 236–245.CrossRef Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing,29(1), 236–245.CrossRef
Zurück zum Zitat Nubiola, A., & Bonev, I. A. (2014). Absolute robot calibration with a single telescoping ballbar. Precision Engineering,38(3), 472–480.CrossRef Nubiola, A., & Bonev, I. A. (2014). Absolute robot calibration with a single telescoping ballbar. Precision Engineering,38(3), 472–480.CrossRef
Zurück zum Zitat Nubiola, A., & Bonev, I. A. (2015). Non-kinematic calibration of a six-axis serial robot using planar constraints. Precision Engineering,40(3), 472–480.CrossRef Nubiola, A., & Bonev, I. A. (2015). Non-kinematic calibration of a six-axis serial robot using planar constraints. Precision Engineering,40(3), 472–480.CrossRef
Zurück zum Zitat Nubiola, A., Slamani, M., & Bonev, I. A. (2013). A new method for measuring a large set of poses with a single telescoping ballbar. Precision Engineering,37(2), 451–460.CrossRef Nubiola, A., Slamani, M., & Bonev, I. A. (2013). A new method for measuring a large set of poses with a single telescoping ballbar. Precision Engineering,37(2), 451–460.CrossRef
Zurück zum Zitat Pashkevich, A. P. (2001). Computer-aided generation of complete irreducible models for robotic manipulators. In 3rd French simulation and simulation conference on “design, analysis and management of industrial systems (Vol. 1, pp. 294–299). Pashkevich, A. P. (2001). Computer-aided generation of complete irreducible models for robotic manipulators. In 3rd French simulation and simulation conference on “design, analysis and management of industrial systems (Vol. 1, pp. 294–299).
Zurück zum Zitat Qiao, Y., Chen, Y. P., & Chen, B. (2017). A novel calibration method for multi-robots system utilizing calibration model without nominal kinematic parameters. Precision Engineering,50, 211–221.CrossRef Qiao, Y., Chen, Y. P., & Chen, B. (2017). A novel calibration method for multi-robots system utilizing calibration model without nominal kinematic parameters. Precision Engineering,50, 211–221.CrossRef
Zurück zum Zitat Santolaria, J., Brosed, F. J., & Velázquez, J. (2013). Self-alignment of on-board measurement sensors for robot kinematic calibration. Precision Engineering,37, 699–710.CrossRef Santolaria, J., Brosed, F. J., & Velázquez, J. (2013). Self-alignment of on-board measurement sensors for robot kinematic calibration. Precision Engineering,37, 699–710.CrossRef
Zurück zum Zitat Santolaria, J., Conte, J., Pueo, M., & Javierre, C. (2014). Rotation error modeling and identification for robot kinematic calibration by circle point method. Metrology and Measurement Systems,21(1), 85–98.CrossRef Santolaria, J., Conte, J., Pueo, M., & Javierre, C. (2014). Rotation error modeling and identification for robot kinematic calibration by circle point method. Metrology and Measurement Systems,21(1), 85–98.CrossRef
Zurück zum Zitat Schroer, K., Albright, S., & Grethlein, M. (1997). Complete, minimal and model—continuous kinematic models for robot calibration. Robotics and Computer-Integrated Manufacturing,13(1), 73–85.CrossRef Schroer, K., Albright, S., & Grethlein, M. (1997). Complete, minimal and model—continuous kinematic models for robot calibration. Robotics and Computer-Integrated Manufacturing,13(1), 73–85.CrossRef
Zurück zum Zitat Sun, Y., & Hollerbach, J. M. (2008). Observability index selection for robot calibration. In IEEE international conference on robotics and automation( pp. 831–836). Sun, Y., & Hollerbach, J. M. (2008). Observability index selection for robot calibration. In IEEE international conference on robotics and automation( pp. 831–836).
Zurück zum Zitat Wang, W., Liu, F., & Yun, C. (2015). Calibration method of robot base frame using unit quaternion form. Precision Engineering,41, 47–54.CrossRef Wang, W., Liu, F., & Yun, C. (2015). Calibration method of robot base frame using unit quaternion form. Precision Engineering,41, 47–54.CrossRef
Zurück zum Zitat Wu, Y., Klimchik, A., Caro, S., Furet, B., & Pashkevich, A. (2015). Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robotics and Computer-Integrated Manufacturing,35, 151–168.CrossRef Wu, Y., Klimchik, A., Caro, S., Furet, B., & Pashkevich, A. (2015). Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robotics and Computer-Integrated Manufacturing,35, 151–168.CrossRef
Zurück zum Zitat Zhang, X., Song, Y., & Yang, Y. (2017). Stereo vision based autonomous robot calibration. Robotics and Autonomous Systems,93, 43–51.CrossRef Zhang, X., Song, Y., & Yang, Y. (2017). Stereo vision based autonomous robot calibration. Robotics and Autonomous Systems,93, 43–51.CrossRef
Metadaten
Titel
Observability index optimization of robot calibration based on multiple identification spaces
verfasst von
Zhouxiang Jiang
Min Huang
Xiaoqi Tang
Bao Song
Yixuan Guo
Publikationsdatum
18.06.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 6/2020
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09920-1

Weitere Artikel der Ausgabe 6/2020

Autonomous Robots 6/2020 Zur Ausgabe