Skip to main content
Erschienen in: Cellulose 1/2010

01.02.2010

Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose

verfasst von: Zhuo Li, Scott Renneckar, Justin R. Barone

Erschienen in: Cellulose | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this study was to prepare nanocomposites based on polyphenols and nanocellulose fibers using relatively benign processing. To accomplish this, phenol was polymerized using horseradish peroxidase in the presence of TEMPO-oxidized nanocellulose. The polyphenol-nanocellulose composite was insoluble in organic solvents but the individual components were soluble. SEM imaging of fracture surfaces of polyphenol, nanocellulose, and composite indicated brittle failure in polyphenol and nanocellulose but ductile failure in the composite pointing to a potential synergistic effect from the addition of the components. Polyphenol existed as spherical or near-spherical “clusters” that were ca. 10 μm in the absence of nanocellulose and ca. 0.1 μm in the presence of nanocellulose. The observed change in structure corresponded to changes in the thermal stability because the composite was more thermally stable than the components. FT-IR analysis of polyphenol-nanocellulose composites showed physical and chemical interactions between the fiber and matrix. This study is a significant improvement in forming nanocomposites without the intensive processing usually required for dispersion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nancomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nancomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef
Zurück zum Zitat Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931CrossRef Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931CrossRef
Zurück zum Zitat Ayyagari M, Akkara JA, Kaplan DL (1996) Enzyme-mediated polymerization reactions: peroxidase-catalyzed polyphenol synthesis. Acta Polym 47:193–203CrossRef Ayyagari M, Akkara JA, Kaplan DL (1996) Enzyme-mediated polymerization reactions: peroxidase-catalyzed polyphenol synthesis. Acta Polym 47:193–203CrossRef
Zurück zum Zitat Ayyagari M, Akkara JA, Kaplan DL (1998) Solvent-enzyme-polymer interactions in the molecular weight control of poly(m-cresol) synthesized in nonaqueous media. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 112–124 Ayyagari M, Akkara JA, Kaplan DL (1998) Solvent-enzyme-polymer interactions in the molecular weight control of poly(m-cresol) synthesized in nonaqueous media. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 112–124
Zurück zum Zitat Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157CrossRef Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157CrossRef
Zurück zum Zitat Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbert B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–282CrossRef Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbert B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–282CrossRef
Zurück zum Zitat Berglund LA (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 807–832 Berglund LA (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 807–832
Zurück zum Zitat Cathala B, Rondeau-Mouro C, Lairez D, Bedos-Belval F, Durand H, Gorrichon L, Touzel J-P, Chabbert B, Monties B (2005) Model systems for the understanding of lignified plant cell wall formation. Plant Biosyst 139:93–97 Cathala B, Rondeau-Mouro C, Lairez D, Bedos-Belval F, Durand H, Gorrichon L, Touzel J-P, Chabbert B, Monties B (2005) Model systems for the understanding of lignified plant cell wall formation. Plant Biosyst 139:93–97
Zurück zum Zitat Dubey S, Singh D, Misra RA (1998) Enzymatic synthesis and various properties of poly(catechol). Enzyme Microb Technol 23:432–437CrossRef Dubey S, Singh D, Misra RA (1998) Enzymatic synthesis and various properties of poly(catechol). Enzyme Microb Technol 23:432–437CrossRef
Zurück zum Zitat Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210CrossRef Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210CrossRef
Zurück zum Zitat Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306CrossRef Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306CrossRef
Zurück zum Zitat Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
Zurück zum Zitat Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb Technol 31:736–741CrossRef Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb Technol 31:736–741CrossRef
Zurück zum Zitat Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod 20:181–189CrossRef Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod 20:181–189CrossRef
Zurück zum Zitat Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147CrossRef Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147CrossRef
Zurück zum Zitat Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRef Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRef
Zurück zum Zitat Gunzler H, Gremlich H-U (2002) IR spectroscopy. Wiley-VCH, Weinheim Gunzler H, Gremlich H-U (2002) IR spectroscopy. Wiley-VCH, Weinheim
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef
Zurück zum Zitat Johnson RK, Zink-Sharp A, Renneckar S, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRef Johnson RK, Zink-Sharp A, Renneckar S, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRef
Zurück zum Zitat Kohler R, Nebel K (2006) Cellulose-nanocomposites: towards high performance composite materials. Macromol Symp 244:97–106CrossRef Kohler R, Nebel K (2006) Cellulose-nanocomposites: towards high performance composite materials. Macromol Symp 244:97–106CrossRef
Zurück zum Zitat Kumar V, Yang T (2002) HNO3/H3PO4-NANO2 mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403–412CrossRef Kumar V, Yang T (2002) HNO3/H3PO4-NANO2 mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403–412CrossRef
Zurück zum Zitat Lenhart JL, Chaubal MV, Payne GF, Barbari TA (1998) Enzymatic modification of chitosan by tyrosinase. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 188–198 Lenhart JL, Chaubal MV, Payne GF, Barbari TA (1998) Enzymatic modification of chitosan by tyrosinase. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 188–198
Zurück zum Zitat Li Q, Renneckar SH (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose (in press) Li Q, Renneckar SH (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose (in press)
Zurück zum Zitat Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef
Zurück zum Zitat Matsumura H, Glasser WG (2000) Cellulosic nanocomposites. II. Studies by atomic force microscopy. J Appl Polym Sci 78:2254–2261CrossRef Matsumura H, Glasser WG (2000) Cellulosic nanocomposites. II. Studies by atomic force microscopy. J Appl Polym Sci 78:2254–2261CrossRef
Zurück zum Zitat Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253CrossRef Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253CrossRef
Zurück zum Zitat Micic M, Jeremic M, Radotic K, Leblanc RM (2000a) A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. J Coll Inter Sci 231:190–194CrossRef Micic M, Jeremic M, Radotic K, Leblanc RM (2000a) A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. J Coll Inter Sci 231:190–194CrossRef
Zurück zum Zitat Micic M, Jeremic M, Radotic K, Mavers M, Leblanc RM (2000b) Visualization of artificial lignin supramolecular structures. Scan 22:288–294CrossRef Micic M, Jeremic M, Radotic K, Mavers M, Leblanc RM (2000b) Visualization of artificial lignin supramolecular structures. Scan 22:288–294CrossRef
Zurück zum Zitat Micic M, Radotic K, Jeremic M, Leblanc RM (2003) Study of self-assembly of the lignin model compound on cellulose model substrate. Macromol Biosci 3:100–106CrossRef Micic M, Radotic K, Jeremic M, Leblanc RM (2003) Study of self-assembly of the lignin model compound on cellulose model substrate. Macromol Biosci 3:100–106CrossRef
Zurück zum Zitat Micic M, Radotic K, Jeremic M, Djikanovic D, Kammer SB (2004) Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Coll Surf B Bioint 34:33–40CrossRef Micic M, Radotic K, Jeremic M, Djikanovic D, Kammer SB (2004) Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Coll Surf B Bioint 34:33–40CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159CrossRef Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRef Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRef
Zurück zum Zitat Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRef Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRef
Zurück zum Zitat Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (1999) Soluble polyphenol. Macromol Rap Comm 20:401–403CrossRef Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (1999) Soluble polyphenol. Macromol Rap Comm 20:401–403CrossRef
Zurück zum Zitat Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (2000) Enzymatic synthesis of soluble polyphenol. Bull Chem Soc Jpn 73:1389–1396CrossRef Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (2000) Enzymatic synthesis of soluble polyphenol. Bull Chem Soc Jpn 73:1389–1396CrossRef
Zurück zum Zitat Pkk M, Ankerfors M, Kosonen H, Nyknen A, Ahola S, Sterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrm T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Pkk M, Ankerfors M, Kosonen H, Nyknen A, Ahola S, Sterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrm T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
Zurück zum Zitat Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules (in press) Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules (in press)
Zurück zum Zitat Radotic K, Simic-Krstic J, Jeremic M, Trifunovic M (1994) A study of lignin formation at the molecular level by scanning tunneling microscopy. Biophys J 66:1763–1767CrossRef Radotic K, Simic-Krstic J, Jeremic M, Trifunovic M (1994) A study of lignin formation at the molecular level by scanning tunneling microscopy. Biophys J 66:1763–1767CrossRef
Zurück zum Zitat Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49CrossRef Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49CrossRef
Zurück zum Zitat Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. In Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington, DC, pp 99–113 Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. In Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington, DC, pp 99–113
Zurück zum Zitat Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRef Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRef
Zurück zum Zitat Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRef Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRef
Zurück zum Zitat Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef
Zurück zum Zitat Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20:1263–1269CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20:1263–1269CrossRef
Zurück zum Zitat Svagan AJ, Hedenqvist MS, Berglund LA (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRef Svagan AJ, Hedenqvist MS, Berglund LA (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRef
Zurück zum Zitat Touzel J-P, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agric Food Chem 51:981–986CrossRef Touzel J-P, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agric Food Chem 51:981–986CrossRef
Zurück zum Zitat Uyama H, Kobayashi S (2003) Enzymatic synthesis of polyphenols. Curr Org Chem 7:1387–1397CrossRef Uyama H, Kobayashi S (2003) Enzymatic synthesis of polyphenols. Curr Org Chem 7:1387–1397CrossRef
Zurück zum Zitat Uyama H, Kurioka H, Sugihara J, Kobayashi S (1996) Enzymatic synthesis and thermal properties of a new class of polyphenol. Bull Chem Soc Jpn 69:189–193CrossRef Uyama H, Kurioka H, Sugihara J, Kobayashi S (1996) Enzymatic synthesis and thermal properties of a new class of polyphenol. Bull Chem Soc Jpn 69:189–193CrossRef
Zurück zum Zitat Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250CrossRef Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250CrossRef
Metadaten
Titel
Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose
verfasst von
Zhuo Li
Scott Renneckar
Justin R. Barone
Publikationsdatum
01.02.2010
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2010
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-009-9363-4

Weitere Artikel der Ausgabe 1/2010

Cellulose 1/2010 Zur Ausgabe