Skip to main content
Erschienen in: Cellulose 12/2017

03.10.2017 | Original Paper

Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels

verfasst von: Rong Wang, Liang Liu, Juan Yu, Zhiguo Wang, Lijiang Hu, Yimin Fan

Erschienen in: Cellulose | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The partially deacetylated α-chitin nanofiber/nanowhisker (DEChN) aqueous dispersions were prepared by alkali deacetylation. The following mechanical treatment under acidic conditions was mediated by five different organic protonic acids, including acetic acid, gluconic acid, itaconic acid, citric acid and ascorbic acid. Thereafter, these acidic DEChN dispersions were transformed into hydrogels under an alkali gas phase coagulation bath. After solvent exchange and freeze drying, the DEChN-based aerogels were prepared. Previous research showed that the kinds of acid used for the adjustment of the pH value during the fibrillation process influenced the nanofibrillation efficiency. In this study, it was discovered that the types of protonic acid also influenced the properties of the DEChN hydrogels and aerogels under the same mass concentration (0.6%) of DEChNs, including the appearance, strength of hydrogels, the pore size and specific surface area of aerogels, as well. Nevertheless, all of the hydrogels showed good mechanical strength and all of the aerogels possessed a porous nanostructure sustained by nanofibrillar networks. The highly porous chitin aerogels showed a broad size mainly distribution from 2 to 100 nm, and the specific surface area of chitin aerogels ranged from 90 to 170 m2g−1. Although it was not clear how the types of protonic acids influenced the properties of the hydrogel and aerogel, we were able to obtain DEChN dispersions and gels by mechanical treatment of partially deacetylated chitin at acidic conditions mediated by versatile acids. In the meantime, the observed differences among the gels provided the possibility to use the acid medium to select the gels with certain mechanical strength, porosity or specific surface area for the prospective desired applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21(11):3865–3871. doi:10.1039/C0JM03075A CrossRef Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21(11):3865–3871. doi:10.​1039/​C0JM03075A CrossRef
Zurück zum Zitat Focher B, Naggi A, Torri G, Cosani A, Terbojevich M (1992) Structural differences between chitin polymorphs and their precipitates from solutions—evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydr Polym 17(2):97–102. doi:10.1016/0144-8617(92)90101-U CrossRef Focher B, Naggi A, Torri G, Cosani A, Terbojevich M (1992) Structural differences between chitin polymorphs and their precipitates from solutions—evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydr Polym 17(2):97–102. doi:10.​1016/​0144-8617(92)90101-U CrossRef
Zurück zum Zitat Guillot F, Domard A (2004) Composition for cutaneous repair and cicatrization comprising exclusively a true physical hydrogel of chitosan: Google Patents Guillot F, Domard A (2004) Composition for cutaneous repair and cicatrization comprising exclusively a true physical hydrogel of chitosan: Google Patents
Zurück zum Zitat Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromol 10(6):1584–1588. doi:10.1021/bm900163d CrossRef Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromol 10(6):1584–1588. doi:10.​1021/​bm900163d CrossRef
Zurück zum Zitat Kaya M, Baublys V, Can E, Šatkauskienė I, Bitim B, Tubelytė V, Baran T (2014) Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology 133(3):285–293. doi:10.1007/s00435-014-0227-6 CrossRef Kaya M, Baublys V, Can E, Šatkauskienė I, Bitim B, Tubelytė V, Baran T (2014) Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology 133(3):285–293. doi:10.​1007/​s00435-014-0227-6 CrossRef
Zurück zum Zitat Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3d ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53(39):10394–10397. doi:10.1002/anie.201405123 CrossRef Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3d ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53(39):10394–10397. doi:10.​1002/​anie.​201405123 CrossRef
Zurück zum Zitat Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486. doi:10.1016/j.polymer.2016.05.065 CrossRef Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486. doi:10.​1016/​j.​polymer.​2016.​05.​065 CrossRef
Zurück zum Zitat Liu J, Zhang L, Yang Z, Zhao X (2011) Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed 6:2143–2153. doi:10.2147/IJN.S24038 CrossRef Liu J, Zhang L, Yang Z, Zhao X (2011) Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed 6:2143–2153. doi:10.​2147/​IJN.​S24038 CrossRef
Zurück zum Zitat Liu L, Lv H, Jiang J, Zheng K, Ye W, Wang Z, Fan Y (2015) Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase. RSC Adv 5(113):93331–93336. doi:10.1039/C5RA14250D CrossRef Liu L, Lv H, Jiang J, Zheng K, Ye W, Wang Z, Fan Y (2015) Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase. RSC Adv 5(113):93331–93336. doi:10.​1039/​C5RA14250D CrossRef
Zurück zum Zitat Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Wang Z, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromol 17(11):3773–3781. doi:10.1021/acs.biomac.6b01278 CrossRef Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Wang Z, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromol 17(11):3773–3781. doi:10.​1021/​acs.​biomac.​6b01278 CrossRef
Zurück zum Zitat Lopez G, Ros G, Rincon F, Periago MJ, Martinez MC, Ortuno J (1996) Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. J Agric Food Chem 44(9):2773–2778. doi:10.1021/jf9507699 CrossRef Lopez G, Ros G, Rincon F, Periago MJ, Martinez MC, Ortuno J (1996) Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. J Agric Food Chem 44(9):2773–2778. doi:10.​1021/​jf9507699 CrossRef
Zurück zum Zitat Qi ZD, Fan Y, Saito T, Fukuzumi H, Tsutsumi Y, Isogai A (2013) Improvement of nanofibrillation efficiency of α-chitin in water by selecting acid used for surface cationisation. RSC Adv 3(8):2613. doi:10.1039/C2RA22271J CrossRef Qi ZD, Fan Y, Saito T, Fukuzumi H, Tsutsumi Y, Isogai A (2013) Improvement of nanofibrillation efficiency of α-chitin in water by selecting acid used for surface cationisation. RSC Adv 3(8):2613. doi:10.​1039/​C2RA22271J CrossRef
Zurück zum Zitat Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75. doi:10.1039/C5GC02396C CrossRef Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75. doi:10.​1039/​C5GC02396C CrossRef
Zurück zum Zitat Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13(3):842–849. doi:10.1021/bm2017542 CrossRef Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13(3):842–849. doi:10.​1021/​bm2017542 CrossRef
Metadaten
Titel
Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels
verfasst von
Rong Wang
Liang Liu
Juan Yu
Zhiguo Wang
Lijiang Hu
Yimin Fan
Publikationsdatum
03.10.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1511-7

Weitere Artikel der Ausgabe 12/2017

Cellulose 12/2017 Zur Ausgabe