Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2021

09.03.2021

Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites

verfasst von: Ai Ling Pang, Muhamad Rasyidi Husin, Agus Arsad, Mohsen Ahmadipour

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recycled polypropylene/polyaniline/graphene nanoplatelets (rPP/PANI/GNPs) nanocomposites were fabricated via ultrasonic-assisted single-screw extruder at 150–170 °C with a rotating screw speed of 50 rpm. The ultrasonic wave frequency and power supply were kept constant at a frequency of 20 kHz and 6 kW, respectively. The composition of the polymer nanocomposites used in this study was 92 wt.% rPP and 8 wt.% PANI, denoted as rPP/PANI. The effects of GNPs loadings (0.5, 1.5, and 3.0 parts per hundred resin (phr)) on the structural, morphological, thermal, and electrical properties on the nanocomposites were systematically evaluated. The X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) showed the presence of GNPs characteristics at 26.5°, 42.40°, 54.51°, and interactions between GNPs and rPP/PANI nanocomposites at different GNPs loadings. The compatibility of GNPs in rPP/PANI nanocomposites was confirmed by the morphological study, which showed to an enhancement in the electrical properties of the nanocomposites. The results also showed that the incorporation of 3 phr GNPs into rPP/PANI nanocomposites resulted in a lower degree of crystallinity of about 20.8% and a higher electrical conductivity of about 4.1 × 10–1 S cm−1. The current work paves a way towards understanding how to effectively enhance the electrical conductivity of rPP/PANI nanocomposites using GNPs, leading to potential use in electronic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.G. Lee, S.W. Lee, J.H. Cho, J.Y. Jho, Improving dispersion and mechanical properties of polypropylene/graphene nanoplatelet composites by mixed solvent-assisted melt blending. Macromol. Res. 28, 1166–1173 (2020)CrossRef M.G. Lee, S.W. Lee, J.H. Cho, J.Y. Jho, Improving dispersion and mechanical properties of polypropylene/graphene nanoplatelet composites by mixed solvent-assisted melt blending. Macromol. Res. 28, 1166–1173 (2020)CrossRef
2.
Zurück zum Zitat J.Z. Liang, J.Z. Wang, G.C.P. Tsui, C.Y. Tang, Thermal properties and thermal stability of polypropylene composites filled with grapheme nanoplatelets. J. Thermoplast. Compos. Mater. 31(2), 246–264 (2018)CrossRef J.Z. Liang, J.Z. Wang, G.C.P. Tsui, C.Y. Tang, Thermal properties and thermal stability of polypropylene composites filled with grapheme nanoplatelets. J. Thermoplast. Compos. Mater. 31(2), 246–264 (2018)CrossRef
3.
Zurück zum Zitat A.L. Pang, H. Ismail, Tensile properties, water uptake and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composites. BioRes. 8(1), 806–817 (2013) A.L. Pang, H. Ismail, Tensile properties, water uptake and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composites. BioRes. 8(1), 806–817 (2013)
4.
Zurück zum Zitat K. Zdiri, A. Elamri, M. Hamdaoui, O. Harzallah, N. Khenoussi, J. Brendle, Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 11(3), 296–311 (2018)CrossRef K. Zdiri, A. Elamri, M. Hamdaoui, O. Harzallah, N. Khenoussi, J. Brendle, Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 11(3), 296–311 (2018)CrossRef
5.
Zurück zum Zitat A.M. Rahnamol, J. Gopalakrishnan, Improved dielectric and dynamic mechanical properties of epoxy/polyaniline nanorod/in situ reduced grapheme oxide hybrid nanocomposites. Polym. Compos. 41(8), 2998–3013 (2020)CrossRef A.M. Rahnamol, J. Gopalakrishnan, Improved dielectric and dynamic mechanical properties of epoxy/polyaniline nanorod/in situ reduced grapheme oxide hybrid nanocomposites. Polym. Compos. 41(8), 2998–3013 (2020)CrossRef
6.
Zurück zum Zitat S.H. Cho, M.K. Kim, J.S. Lee, J.S. Jang, Polypropylene/polyaniline nanofiber/reduced graphene oxide nanocomposite with enhanced electrical, dielectric, and ferroelectric properties for a high energy density capacitor. ACS Appl. Mater. Interfaces 7(40), 22301–22314 (2015)CrossRef S.H. Cho, M.K. Kim, J.S. Lee, J.S. Jang, Polypropylene/polyaniline nanofiber/reduced graphene oxide nanocomposite with enhanced electrical, dielectric, and ferroelectric properties for a high energy density capacitor. ACS Appl. Mater. Interfaces 7(40), 22301–22314 (2015)CrossRef
7.
Zurück zum Zitat F.X. Perrin, C. Oueiny, Chapter 5-Polyaniline-based thermoplastic blends, ed. By P.M. Visakh, C.D. Pina, E. Falletta, (Elsevier, 2018), pp. 117–147 F.X. Perrin, C. Oueiny, Chapter 5-Polyaniline-based thermoplastic blends, ed. By P.M. Visakh, C.D. Pina, E. Falletta, (Elsevier, 2018), pp. 117–147
8.
Zurück zum Zitat M.E. Ali Mohsin, N.K. Shrivastava, A. Arsad, N. Basar, A. Hassan, The effect of pH on the preparation of electrically conductive and physically stable PANI/sago blend film via in situ polymerization. Front. Mater. 7(20), 1–11 (2020) M.E. Ali Mohsin, N.K. Shrivastava, A. Arsad, N. Basar, A. Hassan, The effect of pH on the preparation of electrically conductive and physically stable PANI/sago blend film via in situ polymerization. Front. Mater. 7(20), 1–11 (2020)
9.
Zurück zum Zitat S. Paszkiewicz, A. Szymczyk, Z. Rosłaniec, Chapter 5-Graphene derivatives in semicrystalline polymer composites, ed. by A. Tiwari, M. Syvajarvi, (Scrivener Publishing LLC, 2016) pp. 145–146 S. Paszkiewicz, A. Szymczyk, Z. Rosłaniec, Chapter 5-Graphene derivatives in semicrystalline polymer composites, ed. by A. Tiwari, M. Syvajarvi, (Scrivener Publishing LLC, 2016) pp. 145–146
10.
Zurück zum Zitat D.D. Yang, H.P. Xu, W. Yu, J.R. Wang, X.C. Gong, Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend. J. Mater. Sci. Mater. Electron. 28, 13006–13012 (2017)CrossRef D.D. Yang, H.P. Xu, W. Yu, J.R. Wang, X.C. Gong, Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend. J. Mater. Sci. Mater. Electron. 28, 13006–13012 (2017)CrossRef
11.
Zurück zum Zitat P.N. Khanam, M.A. AlMaadeed, M. Ouederni, E. Harkin-Jones, B. Mayoral, A. Hamilton, D. Sun, Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 130, 63–71 (2016)CrossRef P.N. Khanam, M.A. AlMaadeed, M. Ouederni, E. Harkin-Jones, B. Mayoral, A. Hamilton, D. Sun, Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 130, 63–71 (2016)CrossRef
12.
Zurück zum Zitat M.A. Al-Saleh, A.A. Yussuf, S. Al-Enezi, R. Kazemi, M.T. Wahit, T. Al-Shammari, A. Al-Banna, Polypropylene/graphene nanocomposites: effects of gnp loading and compatibilizers on the mechanical and thermal properties. Mater. 12(23), 3924–3934 (2019)CrossRef M.A. Al-Saleh, A.A. Yussuf, S. Al-Enezi, R. Kazemi, M.T. Wahit, T. Al-Shammari, A. Al-Banna, Polypropylene/graphene nanocomposites: effects of gnp loading and compatibilizers on the mechanical and thermal properties. Mater. 12(23), 3924–3934 (2019)CrossRef
13.
Zurück zum Zitat Y.F. Li, J.H. Zhu, S.Y. Wei, J.E. Ryu, L.Y. Sun, Z.H. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behaviour and thermal, electrical, and electronic properties. Macromol. Chem. Phys. 212(18), 1951–1959 (2011)CrossRef Y.F. Li, J.H. Zhu, S.Y. Wei, J.E. Ryu, L.Y. Sun, Z.H. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behaviour and thermal, electrical, and electronic properties. Macromol. Chem. Phys. 212(18), 1951–1959 (2011)CrossRef
14.
Zurück zum Zitat B. Abad, I. Alda, P. Dıaz-Chao, H. Kawakami, A. Almarza, D. Amantia, D. Gutierrez, L. Aubouy, M. Martın-Gonzalez, Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J. Mater. Chem. A. 1(35), 10450–10457 (2013)CrossRef B. Abad, I. Alda, P. Dıaz-Chao, H. Kawakami, A. Almarza, D. Amantia, D. Gutierrez, L. Aubouy, M. Martın-Gonzalez, Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J. Mater. Chem. A. 1(35), 10450–10457 (2013)CrossRef
15.
Zurück zum Zitat N. Badi, S. Khasim, A.S. Roy, Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J. Mater. Sci. Mater. Electron. 27, 6249–6257 (2016)CrossRef N. Badi, S. Khasim, A.S. Roy, Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J. Mater. Sci. Mater. Electron. 27, 6249–6257 (2016)CrossRef
16.
Zurück zum Zitat S. Khasim, Polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)CrossRef S. Khasim, Polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)CrossRef
17.
Zurück zum Zitat A.R. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Effects of graphene nanoplatelet size and surface area on the ac electrical conductivity and dielectric constant of epoxy nanocomposites. Polym. 10(5), 477–493 (2018)CrossRef A.R. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Effects of graphene nanoplatelet size and surface area on the ac electrical conductivity and dielectric constant of epoxy nanocomposites. Polym. 10(5), 477–493 (2018)CrossRef
18.
Zurück zum Zitat T. Evgin, A. Turgut, G. Hamaoui, Z. Spitalsky, N. Horny, M. Micusik, M. Chirtoc, M. Sarikanat, M. Omastova, Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization. Beilstein J. Nanotechnol. 11, 167–179 (2020)CrossRef T. Evgin, A. Turgut, G. Hamaoui, Z. Spitalsky, N. Horny, M. Micusik, M. Chirtoc, M. Sarikanat, M. Omastova, Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization. Beilstein J. Nanotechnol. 11, 167–179 (2020)CrossRef
19.
Zurück zum Zitat A. Shubha, S.R. Manohara, Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone-graphene nanocomposites. J. Mater. Sci. Mater. Electron. 31, 16498–16510 (2020)CrossRef A. Shubha, S.R. Manohara, Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone-graphene nanocomposites. J. Mater. Sci. Mater. Electron. 31, 16498–16510 (2020)CrossRef
20.
Zurück zum Zitat M.R. Husin, A. Arsad, A. Hassan, O. Hassan, Influence of different ultrasonic wave on polymerization of polyaniline nanofiber. Appl. Mech. Mater. 618, 50–54 (2014)CrossRef M.R. Husin, A. Arsad, A. Hassan, O. Hassan, Influence of different ultrasonic wave on polymerization of polyaniline nanofiber. Appl. Mech. Mater. 618, 50–54 (2014)CrossRef
21.
Zurück zum Zitat L. Altay, M. Atagur, K. Sever, I. Sen, T. Uysalman, Y. Seki, M. Sarikanat, Synergistic effects of graphene nanoplatelets in thermally conductive synthetic graphite filled polypropylene composite. Polym. Compos. 40(1), 277–287 (2019)CrossRef L. Altay, M. Atagur, K. Sever, I. Sen, T. Uysalman, Y. Seki, M. Sarikanat, Synergistic effects of graphene nanoplatelets in thermally conductive synthetic graphite filled polypropylene composite. Polym. Compos. 40(1), 277–287 (2019)CrossRef
22.
Zurück zum Zitat U. Mehmood, H. Asghar, F. Babar, M. Younas, Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol. Energy 196, 132–136 (2020)CrossRef U. Mehmood, H. Asghar, F. Babar, M. Younas, Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol. Energy 196, 132–136 (2020)CrossRef
23.
Zurück zum Zitat B. Jiang, B. Peng, A. Zhu, C. Zhang, Y. Li, Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites. J. Mater. Sci. 53, 626–636 (2018)CrossRef B. Jiang, B. Peng, A. Zhu, C. Zhang, Y. Li, Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites. J. Mater. Sci. 53, 626–636 (2018)CrossRef
24.
Zurück zum Zitat S. Gutic, A.S. Dobrota, N. Gavrilov, M. Baljozovic, I.A. Pasti, S.V. Mentus, Surface charge storage properties of selected graphene samples in ph-neutral aqueous solutions of alkali metal chlorides-particularities and universalities. Int. J. Electrochem. Sci. 11, 8662–8682 (2016)CrossRef S. Gutic, A.S. Dobrota, N. Gavrilov, M. Baljozovic, I.A. Pasti, S.V. Mentus, Surface charge storage properties of selected graphene samples in ph-neutral aqueous solutions of alkali metal chlorides-particularities and universalities. Int. J. Electrochem. Sci. 11, 8662–8682 (2016)CrossRef
25.
Zurück zum Zitat I. Karacan, H. Benli, An X-ray diffraction study for isotactic polypropylene fibers produced with take-up speeds of 2500–4250 m/min. Tekstil Ve Konfeksiyon. 21, 201–209 (2011) I. Karacan, H. Benli, An X-ray diffraction study for isotactic polypropylene fibers produced with take-up speeds of 2500–4250 m/min. Tekstil Ve Konfeksiyon. 21, 201–209 (2011)
26.
Zurück zum Zitat B.S. Rao, N. Maramu, E.V. Rao, N.S. Rao, K.R. Prasad, Deconvolution of x-ray diffraction spectrum of polypropylene. Res. Rev. J. Phys. 2(3), 1–4 (2018) B.S. Rao, N. Maramu, E.V. Rao, N.S. Rao, K.R. Prasad, Deconvolution of x-ray diffraction spectrum of polypropylene. Res. Rev. J. Phys. 2(3), 1–4 (2018)
27.
Zurück zum Zitat M. Zhang, X. Wang, T. Yang, P. Zhang, X. Wei, L. Zhang, H. Li, Polyaniline/graphene hybrid fibers as electrodes for flexible\supercapacitors. Synth. Met. 268, 116484 (2020)CrossRef M. Zhang, X. Wang, T. Yang, P. Zhang, X. Wei, L. Zhang, H. Li, Polyaniline/graphene hybrid fibers as electrodes for flexible\supercapacitors. Synth. Met. 268, 116484 (2020)CrossRef
28.
Zurück zum Zitat S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polym. 150, 150–158 (2018)CrossRef S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polym. 150, 150–158 (2018)CrossRef
29.
Zurück zum Zitat M. Ahmadipour, M.J. Abu, M.F.A. Rahman, M.F. Ain, Z.A. Ahmad, Assessment of crystallite size and strain of CaCu3Ti4O12 prepared via conventional solid-state reaction. Micro. Nano. Lett. 11(3), 147–150 (2016)CrossRef M. Ahmadipour, M.J. Abu, M.F.A. Rahman, M.F. Ain, Z.A. Ahmad, Assessment of crystallite size and strain of CaCu3Ti4O12 prepared via conventional solid-state reaction. Micro. Nano. Lett. 11(3), 147–150 (2016)CrossRef
30.
Zurück zum Zitat D. Zheng, H. Yang, F. Yu, B. Zhang, H. Cui, Effect of graphene oxide on the crystallization of calcium carbonate by C3S carbonation. Mater. 12, 2045–2054 (2019)CrossRef D. Zheng, H. Yang, F. Yu, B. Zhang, H. Cui, Effect of graphene oxide on the crystallization of calcium carbonate by C3S carbonation. Mater. 12, 2045–2054 (2019)CrossRef
31.
Zurück zum Zitat I. Raut, M. Calin, Z. Vuluga, E. Alexandrescu, M.L. Arsene, V. Purcar, C.A. Nicolae, A.M. Gurban, M. Doni, L. Jecu, Comparative study on the behavior of virgin and recycled polyolefins–cellulose composites in natural environmental conditions. J. Compos. Sci. 3(2), 60–74 (2019)CrossRef I. Raut, M. Calin, Z. Vuluga, E. Alexandrescu, M.L. Arsene, V. Purcar, C.A. Nicolae, A.M. Gurban, M. Doni, L. Jecu, Comparative study on the behavior of virgin and recycled polyolefins–cellulose composites in natural environmental conditions. J. Compos. Sci. 3(2), 60–74 (2019)CrossRef
32.
Zurück zum Zitat S.A. Stoian, A.R. Gabor, A.M. Albu, C.A. Nicolae, V. Raditoiu, D.M. Panaitescu, Recycled polypropylene with improved thermal stability and melt processability. J. Therm. Analy. Calorim. 138, 2469–2480 (2019)CrossRef S.A. Stoian, A.R. Gabor, A.M. Albu, C.A. Nicolae, V. Raditoiu, D.M. Panaitescu, Recycled polypropylene with improved thermal stability and melt processability. J. Therm. Analy. Calorim. 138, 2469–2480 (2019)CrossRef
33.
Zurück zum Zitat M. Kılıc, U. Alkan, Y. Karabul, H.B. Yamak, O. Icelli, The effects of PANI concentration on the mechanical properties of PP/PANI composites. AKU J. Sci. Eng. 18(2), 426–433 (2018)CrossRef M. Kılıc, U. Alkan, Y. Karabul, H.B. Yamak, O. Icelli, The effects of PANI concentration on the mechanical properties of PP/PANI composites. AKU J. Sci. Eng. 18(2), 426–433 (2018)CrossRef
34.
Zurück zum Zitat M.H.M. Moghadam, S. Sabury, M.M. Gudarzi, F. Sharif, Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J. Polym. Sci. Part A Polym. Chem. 52(11), 1545–1554 (2014)CrossRef M.H.M. Moghadam, S. Sabury, M.M. Gudarzi, F. Sharif, Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J. Polym. Sci. Part A Polym. Chem. 52(11), 1545–1554 (2014)CrossRef
35.
Zurück zum Zitat M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswamid, Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5(39), 31039–31048 (2015)CrossRef M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswamid, Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5(39), 31039–31048 (2015)CrossRef
36.
Zurück zum Zitat Q. Wang, Y.M. Wang, Q.G. Meng, T.L. Wang, W.H. Guo, G.H. Wu, L. You, Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending. RSC Adv. 7(5), 2796–2803 (2017)CrossRef Q. Wang, Y.M. Wang, Q.G. Meng, T.L. Wang, W.H. Guo, G.H. Wu, L. You, Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending. RSC Adv. 7(5), 2796–2803 (2017)CrossRef
37.
Zurück zum Zitat O.A. Al-Hartomy, S. Khasim, A. Roy, A. Pasha, Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases. Appl. Phys. A. 125, 12–20 (2019)CrossRef O.A. Al-Hartomy, S. Khasim, A. Roy, A. Pasha, Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases. Appl. Phys. A. 125, 12–20 (2019)CrossRef
38.
Zurück zum Zitat M.S. Gumaan, Chromium improvements on the mechanical performance of a rapidly solidifed eutectic Sn-Ag alloy. J. Mater. Sci. Mater. Electron. 31, 10731–10737 (2020)CrossRef M.S. Gumaan, Chromium improvements on the mechanical performance of a rapidly solidifed eutectic Sn-Ag alloy. J. Mater. Sci. Mater. Electron. 31, 10731–10737 (2020)CrossRef
39.
Zurück zum Zitat Y.S. Jun, J.G. Um, G. Jiang, A. Yu, A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. eXPRESS Polym. Lett. 12(10), 885–897 (2018)CrossRef Y.S. Jun, J.G. Um, G. Jiang, A. Yu, A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. eXPRESS Polym. Lett. 12(10), 885–897 (2018)CrossRef
40.
Zurück zum Zitat E. Watt, M.A. Abdelwahab, M.R. Snowdon, A.K. Mohanty, H. Khalil, M. Misra, Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets. Sci. Rep. 10, 10714–10726 (2020)CrossRef E. Watt, M.A. Abdelwahab, M.R. Snowdon, A.K. Mohanty, H. Khalil, M. Misra, Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets. Sci. Rep. 10, 10714–10726 (2020)CrossRef
41.
Zurück zum Zitat M.A. Yusof, N.H. Nor Rahman, S.Z. Sulaiman, A.H. Sofian, M.S.Z. Mat Desa, I. Izirwan, Development of low density polyethylene/graphene nanoplatelets with enhanced thermal properties. IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies, 6-9 (2018) M.A. Yusof, N.H. Nor Rahman, S.Z. Sulaiman, A.H. Sofian, M.S.Z. Mat Desa, I. Izirwan, Development of low density polyethylene/graphene nanoplatelets with enhanced thermal properties. IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies, 6-9 (2018)
42.
Zurück zum Zitat I.M. Inuwa, A. Hassan, S.A. Shamsudin, Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/polypropylene nanocomposites. Malays. J. Analy. Sci. 18(2), 466–477 (2014) I.M. Inuwa, A. Hassan, S.A. Shamsudin, Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/polypropylene nanocomposites. Malays. J. Analy. Sci. 18(2), 466–477 (2014)
43.
Zurück zum Zitat A.H. Mohamad, O.G. Abdullah, S.R. Saeed, Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films. Results Phys. 16, 102898–102906 (2020)CrossRef A.H. Mohamad, O.G. Abdullah, S.R. Saeed, Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films. Results Phys. 16, 102898–102906 (2020)CrossRef
44.
Zurück zum Zitat J. Pionteck, Chapter 1- Introduction, Handbook of antistatics, ed. By J. Pionteck, G. Wypych, (Elsevier, 2017) pp. 1–15 J. Pionteck, Chapter 1- Introduction, Handbook of antistatics, ed. By J. Pionteck, G. Wypych, (Elsevier, 2017) pp. 1–15
45.
Zurück zum Zitat M.A. Tarawneh, S.A. Saraireh, R.S. Chen, S.H. Ahmad, M.A.M. Al-Tarawni, M. Al-Tweissi, L.J. Yu, Mechanical, thermal, and conductivity performances of novel thermoplastic natural rubber/graphene nanoplates/polyaniline composites. J. Appl. Polym. Sci. 137(28), 48873–48883 (2020)CrossRef M.A. Tarawneh, S.A. Saraireh, R.S. Chen, S.H. Ahmad, M.A.M. Al-Tarawni, M. Al-Tweissi, L.J. Yu, Mechanical, thermal, and conductivity performances of novel thermoplastic natural rubber/graphene nanoplates/polyaniline composites. J. Appl. Polym. Sci. 137(28), 48873–48883 (2020)CrossRef
46.
Zurück zum Zitat P. Modak, S.B. Kondawar, D.V. Nandanwar, Synthesis and characterization of conducting polyaniline/grapheme nanocomposites for electromagnetic interference shielding. Procedia Mater. Sci. 10, 588–594 (2015)CrossRef P. Modak, S.B. Kondawar, D.V. Nandanwar, Synthesis and characterization of conducting polyaniline/grapheme nanocomposites for electromagnetic interference shielding. Procedia Mater. Sci. 10, 588–594 (2015)CrossRef
47.
Zurück zum Zitat D.R. Dhakal, P. Lamichhane, K. Mishra, T.L. Nelson, R.K. Vaidyanathan, Influence of graphene reinforcement in conductive polymer: synthesis and characterization. Polym. Adv. Technol. 30(9), 2172–2182 (2019)CrossRef D.R. Dhakal, P. Lamichhane, K. Mishra, T.L. Nelson, R.K. Vaidyanathan, Influence of graphene reinforcement in conductive polymer: synthesis and characterization. Polym. Adv. Technol. 30(9), 2172–2182 (2019)CrossRef
48.
Zurück zum Zitat B. Krause, P. Rzeczkowski, P. Potschke, Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers. Polym. 11(6), 1073–1087 (2019)CrossRef B. Krause, P. Rzeczkowski, P. Potschke, Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers. Polym. 11(6), 1073–1087 (2019)CrossRef
Metadaten
Titel
Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites
verfasst von
Ai Ling Pang
Muhamad Rasyidi Husin
Agus Arsad
Mohsen Ahmadipour
Publikationsdatum
09.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05620-3

Weitere Artikel der Ausgabe 7/2021

Journal of Materials Science: Materials in Electronics 7/2021 Zur Ausgabe

Neuer Inhalt