Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2023

16.03.2023

Loading-Unloading-Recovery Curves for Polyester Yarns and Identification of the Nonlinear Maxwell-Type Viscoelastoplastic Model

verfasst von: A. V. Khokhlov, A. V. Shaporev, O. N. Stolyarov

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents results of uniaxial tensile tests of a multifilament polyester yarn in three-stage loading and unloading programs with different loading rates and subsequent recovery to study its viscoelastoplastic properties. The verificatio n of applicability of a physically nonlinear constitutive relation of Maxwell-type viscoelasticity with two material functions, studied in detail earlier, was accomplished by means of loadingunloading- recovery curves with different loading rates and durations (in the range up to 70% of the tensile strength of the yarn). At the first stage of an express inspection, it was established that most of the basic applicability indicators were fulfilled with an acceptable accuracy. However, one indicator was not fulfilled and warned us about possible difficulties in identifying and applying the Maxwell model to the describing the behavior of the polyester yarn. Two material functions for the multifilament polyester yarn were determined and two methods for identifying the constitutive relation according to the loading-unloading-recovery curves were developed. The ways to improve the initial identification methods were indicated. A fast and economical identification technique using only one loading-unloading-recovery curve was proposed that describes behavior of the polyester yarn more accurately. The material function describing the elastic strain was determined with a high accuracy. It appeared to be linearly dependent on the stress of the polyester yarn on the entire stress range considered. Verification of the calibrated model with the material functions determined carried out in several ways. It demonstrated that the model described satisfactorily the test data for the polyester yarn in the complex test programs. It was shown that an improved approximation of the viscoplastic strain by the model can be achieved by using tests with different loading durations. It was also shown that, for the polyester yarn, a series of tests with a loading duration of 300 s and various loading rates is insufficient, and the loading time has to be at least 900 s.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://doi.org/10.14498/vsgtu1512 A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://​doi.​org/​10.​14498/​vsgtu1512
3.
Zurück zum Zitat A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci. 21, No. 1, 160-179 (2017). doi:https://doi.org/10.14498/vsgtu1524 A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci. 21, No. 1, 160-179 (2017). doi:https://​doi.​org/​10.​14498/​vsgtu1524
4.
Zurück zum Zitat A. V. Khokhlov, “Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.] 22, No. 2, 293-324 (2018). doi:https://doi.org/10.14498/vsgtu1573 A. V. Khokhlov, “Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.] 22, No. 2, 293-324 (2018). doi:https://​doi.​org/​10.​14498/​vsgtu1573
6.
Zurück zum Zitat A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-Type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://doi.org/10.18698/1812-3368-2018-6-92-112 A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-Type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://​doi.​org/​10.​18698/​1812-3368-2018-6-92-112
8.
Zurück zum Zitat A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No. 10, 956-963 (2019). doi:https://doi.org/10.1134/S0036029519100136 A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No. 10, 956-963 (2019). doi:https://​doi.​org/​10.​1134/​S003602951910013​6
9.
Zurück zum Zitat A. J. East, “Polyester fibers,” In: Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin. Edited by J. E. McIntyre, Cambridge, Woodhead Publishing Ltd, 95-166 (2004). A. J. East, “Polyester fibers,” In: Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin. Edited by J. E. McIntyre, Cambridge, Woodhead Publishing Ltd, 95-166 (2004).
10.
Zurück zum Zitat R. Chattopadhyay, “Introduction: types of technical textile yarn,” In: Technical Textile Yarns. Edited by R. Alagirusamy and A. Das, Cambridge,Woodhead Publishing Ltd, 3-55 (2010)CrossRef R. Chattopadhyay, “Introduction: types of technical textile yarn,” In: Technical Textile Yarns. Edited by R. Alagirusamy and A. Das, Cambridge,Woodhead Publishing Ltd, 3-55 (2010)CrossRef
11.
Zurück zum Zitat R. Fangueiro, C. G. Pereira, and M. De Araujo, “Applications of polyesters and polyamides in civil engineering,” In: Polyesters and Polyamides. Edited by R. Fangueiro, Cambridge, Woodhead Publishing Ltd, 542-592 (2008).CrossRef R. Fangueiro, C. G. Pereira, and M. De Araujo, “Applications of polyesters and polyamides in civil engineering,” In: Polyesters and Polyamides. Edited by R. Fangueiro, Cambridge, Woodhead Publishing Ltd, 542-592 (2008).CrossRef
12.
Zurück zum Zitat H. Yazdani, K. Hatami, and B. P. Grady, “Sensor-enabled geogrids for performance monitoring of reinforced soil structures,” J. Testing and Evaluation, 44, No. 1, 20140501 (2016). H. Yazdani, K. Hatami, and B. P. Grady, “Sensor-enabled geogrids for performance monitoring of reinforced soil structures,” J. Testing and Evaluation, 44, No. 1, 20140501 (2016).
13.
Zurück zum Zitat C. W. Hsiehl, K. Lee, H. K. Yoo, and H. Jeon, “Tensile creep behavior of polyester geogrids by conventional and accelerated test methods,” Fibers and Polymers, 9, No. 4, 476-480 (2008).CrossRef C. W. Hsiehl, K. Lee, H. K. Yoo, and H. Jeon, “Tensile creep behavior of polyester geogrids by conventional and accelerated test methods,” Fibers and Polymers, 9, No. 4, 476-480 (2008).CrossRef
14.
Zurück zum Zitat S.-S. Yeo and Y. G. Hsuan, “Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids,” Geotextiles and Geomembranes, 28, No. 5, 409-421 (2010).CrossRef S.-S. Yeo and Y. G. Hsuan, “Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids,” Geotextiles and Geomembranes, 28, No. 5, 409-421 (2010).CrossRef
17.
Zurück zum Zitat S. Bandyopadhyay, A. Ghosh, and S. Y. Ali, “Tensile fatigue, stress relaxation, and creep behaviors of worsted core spun yarns,” J. Appl. Polymer Sci., 121, No. 4, 2123–2126 (2011).CrossRef S. Bandyopadhyay, A. Ghosh, and S. Y. Ali, “Tensile fatigue, stress relaxation, and creep behaviors of worsted core spun yarns,” J. Appl. Polymer Sci., 121, No. 4, 2123–2126 (2011).CrossRef
19.
Zurück zum Zitat K. Chen, J. Yu, Y. Liu, M. Song, Q. Jiang, H. Ji, and H. Wang, “Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature,” Polymer Int., 68, No. 3, 555-563 (2019). doi: https://doi.org/10.1002/pi.574520. C. Le Clerc, A. R. Bunsell, and A. Piant, “Influence of temperature on the mechanical behavior of polyester fibers,” J. Mater. Sci., 41, No. 22, 7509–7523 (2006). K. Chen, J. Yu, Y. Liu, M. Song, Q. Jiang, H. Ji, and H. Wang, “Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature,” Polymer Int., 68, No. 3, 555-563 (2019). doi: https://​doi.​org/​10.​1002/​pi.​574520. C. Le Clerc, A. R. Bunsell, and A. Piant, “Influence of temperature on the mechanical behavior of polyester fibers,” J. Mater. Sci., 41, No. 22, 7509–7523 (2006).
20.
Zurück zum Zitat 21. A. Asayesh and A. JeSSDi, “Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn,” Textile Research J., 80, No. 7, 642-650 (2010).CrossRef 21. A. Asayesh and A. JeSSDi, “Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn,” Textile Research J., 80, No. 7, 642-650 (2010).CrossRef
21.
Zurück zum Zitat 22. W. Huang, H. Liu, Y. Lian, and L. Li, “Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings,” Applied Ocean Research, 39, 113-120 (2013).CrossRef 22. W. Huang, H. Liu, Y. Lian, and L. Li, “Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings,” Applied Ocean Research, 39, 113-120 (2013).CrossRef
23.
Zurück zum Zitat 24. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Moscow, Nauka (1966). 24. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Moscow, Nauka (1966).
24.
Zurück zum Zitat 25. I. I. Bugakov, Creep of Polymeric Materials [in Russian], Moscow, Nauka (1973). 25. I. I. Bugakov, Creep of Polymeric Materials [in Russian], Moscow, Nauka (1973).
25.
Zurück zum Zitat 26. N. N. Malinin, Calculations for Creep of Elements of Machine-Building Structures [in Russian], Moscow, Mashinostroenie (1981). 26. N. N. Malinin, Calculations for Creep of Elements of Machine-Building Structures [in Russian], Moscow, Mashinostroenie (1981).
26.
Zurück zum Zitat 27. D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], Moscow, Mashinostroenie (1984). 27. D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], Moscow, Mashinostroenie (1984).
27.
Zurück zum Zitat 28. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997). 28. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997).
28.
Zurück zum Zitat 29. J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008). 29. J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008).
29.
Zurück zum Zitat 30. R. S. Lakes, Viscoelastic Materials, Cambridge, Cambridge Univ. Press (2009).CrossRef 30. R. S. Lakes, Viscoelastic Materials, Cambridge, Cambridge Univ. Press (2009).CrossRef
30.
Zurück zum Zitat J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015). J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015).
31.
Zurück zum Zitat A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016). A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016).
32.
Zurück zum Zitat 33. A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef 33. A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef
33.
Zurück zum Zitat 34. A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef 34. A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef
34.
Zurück zum Zitat 35. M. K Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef 35. M. K Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef
35.
Zurück zum Zitat 36. H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef 36. H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef
36.
Zurück zum Zitat D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestnik Samara Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk, 20, No. 3, 496-507 (2016). D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestnik Samara Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk, 20, No. 3, 496-507 (2016).
37.
Zurück zum Zitat O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984). O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984).
38.
Zurück zum Zitat 39. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef 39. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef
39.
Zurück zum Zitat 40. K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef 40. K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef
40.
Zurück zum Zitat V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Publ. Inc. (2010). V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Publ. Inc. (2010).
41.
Zurück zum Zitat 42. Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent. Mater, 11, 159-172 (2007).CrossRef 42. Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent. Mater, 11, 159-172 (2007).CrossRef
42.
Zurück zum Zitat 43. M. Megahed, A. R. S. Ponter, C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef 43. M. Megahed, A. R. S. Ponter, C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef
43.
Zurück zum Zitat F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagnostika, 73, No. 10, 44-50 (2007). F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagnostika, 73, No. 10, 44-50 (2007).
44.
Zurück zum Zitat V. P. Radchenko and D. V. Shapievsky Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008). V. P. Radchenko and D. V. Shapievsky Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008).
45.
Zurück zum Zitat 46. K. Naumenko, H. Altenbach, and Y. Gorash, “Creep analysis with a stress range dependent constitutive model,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef 46. K. Naumenko, H. Altenbach, and Y. Gorash, “Creep analysis with a stress range dependent constitutive model,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef
46.
Zurück zum Zitat 47. L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef 47. L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef
47.
Zurück zum Zitat A. V. Khokhlov, “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22, No. 1, 65-95 (2018). doi:https://doi.org/10.14498/vsgtu1543 A. V. Khokhlov, “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22, No. 1, 65-95 (2018). doi:https://​doi.​org/​10.​14498/​vsgtu1543
48.
Zurück zum Zitat 49. H. Qi and M. Boyce, “Stress-strain behavior of thermoplastic polyurethanes,” Mech. Mater, 37, No. 8, 817-839 (2005).CrossRef 49. H. Qi and M. Boyce, “Stress-strain behavior of thermoplastic polyurethanes,” Mech. Mater, 37, No. 8, 817-839 (2005).CrossRef
49.
Zurück zum Zitat 50. A. D. Drozdov and N. Dusunceli, “Unusual mechanical response of carbon black-filled thermoplastic elastomers,” Mech. Mater., 69, 116-131 (2014).CrossRef 50. A. D. Drozdov and N. Dusunceli, “Unusual mechanical response of carbon black-filled thermoplastic elastomers,” Mech. Mater., 69, 116-131 (2014).CrossRef
Metadaten
Titel
Loading-Unloading-Recovery Curves for Polyester Yarns and Identification of the Nonlinear Maxwell-Type Viscoelastoplastic Model
verfasst von
A. V. Khokhlov
A. V. Shaporev
O. N. Stolyarov
Publikationsdatum
16.03.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10086-x

Weitere Artikel der Ausgabe 1/2023

Mechanics of Composite Materials 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.