Skip to main content
Erschienen in: Metal Science and Heat Treatment 9-10/2023

14.02.2023 | STRUCTURAL STEELS

Effect of Heat Treatment on Mechanical Properties and Microstructure of Advanced High-Strength Steel

verfasst von: M. V. Maisuradze, Yu. V. Yudin, A. A. Kuklina, D. I. Lebedev

Erschienen in: Metal Science and Heat Treatment | Ausgabe 9-10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An experimental high-strength steel 20Kh2G2SNMA with high resistance of supercooled austenite to formation of diffusion transformation products is studied. Dilatometric analysis of the phase and structural transformations under continuous cooling and isothermal holding is performed. The time-temperature ranges of the transformations are found. The thermokinetic diagram is plotted. The mechanical properties of the steel are determined after different treatments, i.e., annealing, normalizing, quenching, tempering, isothermal and step quenching. It is shown that the presence of bainite in the structure lowers the impact toughness of the steel independently of its morphology and of the temperature range of its formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2003), 784 p. S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2003), 784 p.
2.
Zurück zum Zitat Shan and L. Fu, “Heat treating of air-hardening high-strength structural steels,” in: J. L. Dossett and G. E. Totten (eds.), Heat Treating of Irons and Steels, Vol. 4D, ASM Int., USA (2014), pp. 169 – 178. Shan and L. Fu, “Heat treating of air-hardening high-strength structural steels,” in: J. L. Dossett and G. E. Totten (eds.), Heat Treating of Irons and Steels, Vol. 4D, ASM Int., USA (2014), pp. 169 – 178.
3.
Zurück zum Zitat V. M. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Ershov, “Heat treatment of parts with variable cross section from high-strength engineering steels,” Metallurg, No. 8, 101 – 104 (2014). V. M. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Ershov, “Heat treatment of parts with variable cross section from high-strength engineering steels,” Metallurg, No. 8, 101 – 104 (2014).
4.
Zurück zum Zitat M. V. Maisuradze, Yu. V. Yudin, and D. I. Lebedev, “Thermal strengthening of large parts made from high-strength sparingly doped steel in air,” Steel in Trans., 50(5), 61 – 66 (2020).CrossRef M. V. Maisuradze, Yu. V. Yudin, and D. I. Lebedev, “Thermal strengthening of large parts made from high-strength sparingly doped steel in air,” Steel in Trans., 50(5), 61 – 66 (2020).CrossRef
5.
Zurück zum Zitat G. F. Totten (ed.), Steel Heat Treatment. Metallurgy and Technologies, CRC Press (2006), 848 p. G. F. Totten (ed.), Steel Heat Treatment. Metallurgy and Technologies, CRC Press (2006), 848 p.
6.
Zurück zum Zitat Yu. N. Simonov, N. Panov, M. Yu. Simonov, et al., “Principles of design of the chemical composition of steels for forming a structure of lower carbide-free bainite under delayed cooling,” Metal Sci. Heat Treat., 57, 386 – 394 (2015).CrossRef Yu. N. Simonov, N. Panov, M. Yu. Simonov, et al., “Principles of design of the chemical composition of steels for forming a structure of lower carbide-free bainite under delayed cooling,” Metal Sci. Heat Treat., 57, 386 – 394 (2015).CrossRef
7.
Zurück zum Zitat L. E. Popova and A. A. Popov, Diagrams of Transformation of Austenite in Steels and of Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991), 503 p. L. E. Popova and A. A. Popov, Diagrams of Transformation of Austenite in Steels and of Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991), 503 p.
8.
Zurück zum Zitat Transformation Characteristics of Direct-Hardening Nickel-Alloy Steels, The Mond Nickel Company, UK (1958), 91 p. Transformation Characteristics of Direct-Hardening Nickel-Alloy Steels, The Mond Nickel Company, UK (1958), 91 p.
9.
Zurück zum Zitat S. K. Berezin, A. A. Shatsov, P. O. Bykova, and D. M. Larinin, “Martensitic transformation in low-carbon steels,” Metal Sci. Heat Treat., 59(7 – 8), 479 – 485 (2017).CrossRef S. K. Berezin, A. A. Shatsov, P. O. Bykova, and D. M. Larinin, “Martensitic transformation in low-carbon steels,” Metal Sci. Heat Treat., 59(7 – 8), 479 – 485 (2017).CrossRef
10.
Zurück zum Zitat L. M. Kleiner, D. M. Larynina, L. V. Spivak, and A. A. Shatsov, “Phase and structural transformations in low-carbon martensitic steels,” Phys. Met. Metallogr., 108(2), 153 – 160 (2009).CrossRef L. M. Kleiner, D. M. Larynina, L. V. Spivak, and A. A. Shatsov, “Phase and structural transformations in low-carbon martensitic steels,” Phys. Met. Metallogr., 108(2), 153 – 160 (2009).CrossRef
11.
Zurück zum Zitat J. Pacyna and L. Witek, “The effect of carbides on fracture toughness of steels of ferritic matrix,” Mater. Technol., 59(2), 68 – 74 (1988). J. Pacyna and L. Witek, “The effect of carbides on fracture toughness of steels of ferritic matrix,” Mater. Technol., 59(2), 68 – 74 (1988).
12.
Zurück zum Zitat M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52(11 – 12), 612 – 616 (2011). M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52(11 – 12), 612 – 616 (2011).
13.
Zurück zum Zitat M. V. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Kuklina, “Transformations of supercooled austenite in a promising high-strength steel grade under continuous cooling conditions,” Metal Sci. Heat Treat., 59(7 – 8), 486 – 490 (2017).CrossRef M. V. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Kuklina, “Transformations of supercooled austenite in a promising high-strength steel grade under continuous cooling conditions,” Metal Sci. Heat Treat., 59(7 – 8), 486 – 490 (2017).CrossRef
14.
Zurück zum Zitat M. V. Maisuradze, Yu. V. Yudin, and A. A. Kuklina, “A novel approach for analytical description of the isothermal bainite transformation in alloyed steels,” Mater. Perform. Charact., 8(2), 80 – 95 (2019). M. V. Maisuradze, Yu. V. Yudin, and A. A. Kuklina, “A novel approach for analytical description of the isothermal bainite transformation in alloyed steels,” Mater. Perform. Charact., 8(2), 80 – 95 (2019).
15.
Zurück zum Zitat K. W. Kim, K. I. Lim, C.-H. Lee, et al., “On control of retained austenite morphology through double bainitic transformation,” Mater. Sci. Eng. A, 673, 557 – 561 (2016).CrossRef K. W. Kim, K. I. Lim, C.-H. Lee, et al., “On control of retained austenite morphology through double bainitic transformation,” Mater. Sci. Eng. A, 673, 557 – 561 (2016).CrossRef
16.
Zurück zum Zitat Navarro-López, J. Hidalgo, J. Sietsma, and M. J. Santofimia, “Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature,” Mater. Charact., 128, 248 – 256 (2017). Navarro-López, J. Hidalgo, J. Sietsma, and M. J. Santofimia, “Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature,” Mater. Charact., 128, 248 – 256 (2017).
17.
Zurück zum Zitat Argüelles, F. Barbés, J. I. Espeso, and C. Garcia-Mateo, “Cryogenic study of the magnetic and thermal stability of retained austenite in nanostructured bainite,” Sci. Technol. Adv. Mater., 20(1), 673 – 687 (2019). Argüelles, F. Barbés, J. I. Espeso, and C. Garcia-Mateo, “Cryogenic study of the magnetic and thermal stability of retained austenite in nanostructured bainite,” Sci. Technol. Adv. Mater., 20(1), 673 – 687 (2019).
18.
Zurück zum Zitat J. G. Speer, “Phase transformations in quenched and partitioned steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publishing Ltd, Cambridge (2012), pp. 247 – 270.CrossRef J. G. Speer, “Phase transformations in quenched and partitioned steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publishing Ltd, Cambridge (2012), pp. 247 – 270.CrossRef
19.
Zurück zum Zitat L. Wang and J. G. Speer, “Quenching and partitioning steel heat treatment,” Metallogr., Microstr., Anal., 2, 268 – 281(2013). L. Wang and J. G. Speer, “Quenching and partitioning steel heat treatment,” Metallogr., Microstr., Anal., 2, 268 – 281(2013).
20.
Zurück zum Zitat M. V. Maisuradze, M. A. Ryzhkov, and D. I. Lebedev, “Microstructure and mechanical properties of martensitic high-strength engineering steel,” Metallurgist, 64(7 – 8), 640 – 651 (2020).CrossRef M. V. Maisuradze, M. A. Ryzhkov, and D. I. Lebedev, “Microstructure and mechanical properties of martensitic high-strength engineering steel,” Metallurgist, 64(7 – 8), 640 – 651 (2020).CrossRef
21.
Zurück zum Zitat M. V. Maisuradze, Yu. V. Yudin, A. A. Kuklina, and S. I. Lebedev, “Formation of microstructure and properties during isothermal treatment of aircraft building steel,” Metallurgist, 65(9 – 10), 1008 – 1019 (2022).CrossRef M. V. Maisuradze, Yu. V. Yudin, A. A. Kuklina, and S. I. Lebedev, “Formation of microstructure and properties during isothermal treatment of aircraft building steel,” Metallurgist, 65(9 – 10), 1008 – 1019 (2022).CrossRef
22.
Zurück zum Zitat M. V. Maisuradze, M. A. Ryzhkov, and D. I. Lebedev, “Mechanical properties of a mild-alloy steel for aerospace engineering,” Defect Diffus. Forum, 410, 221 – 226 (2021).CrossRef M. V. Maisuradze, M. A. Ryzhkov, and D. I. Lebedev, “Mechanical properties of a mild-alloy steel for aerospace engineering,” Defect Diffus. Forum, 410, 221 – 226 (2021).CrossRef
Metadaten
Titel
Effect of Heat Treatment on Mechanical Properties and Microstructure of Advanced High-Strength Steel
verfasst von
M. V. Maisuradze
Yu. V. Yudin
A. A. Kuklina
D. I. Lebedev
Publikationsdatum
14.02.2023
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 9-10/2023
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-023-00845-x

Weitere Artikel der Ausgabe 9-10/2023

Metal Science and Heat Treatment 9-10/2023 Zur Ausgabe

STRUCTURE AND PHASE TRANSFORMATIONS

Interatomic Chemical Interactions in Alloys

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.