Skip to main content
Erschienen in: Photonic Network Communications 1/2017

18.12.2016 | Original Paper

Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering

verfasst von: Alireza Tavousi, Mohammad Ali Mansouri-Birjandi, Majid Ghadrdan, Mina Ranjbar-Torkamani

Erschienen in: Photonic Network Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the application of Kerr-like nonlinear photonic crystal (PhC) ring resonator (PCRR) for realizing a tunable full-optical add–drop filter. We used silicon (Si) nano-crystal as the nonlinear material in pillar-based square lattice of a 2DPhC. The nonlinear section of PCRR is studied under three different scenarios: (1) first only the inner rods of PCRR are made of nonlinear materials, (2) only outer rods of PCRR have nonlinear response, and (3) both of inner and outer rods are made of nonlinear material. The simulation results indicate that optical power required to switch the state of PCRR from turn-on to turn-off, for the nonlinearity applied to inner PCRR, is at least \(2000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) and, for the nonlinearity applied to outer PCRR, is at least \(3000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) which corresponds to refractive index change of \(\Delta n_\mathrm{NL }= 0.085\) and \(\Delta n_\mathrm{NL }= 0.15\), respectively. For nonlinear tuning of add–drop filter, the minimum power required to 1 nm redshift the center operating wavelength \((\lambda _{0} = 1550\, \hbox {nm})\) for the inner PCRR scenario is \(125\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) (refractive index change of \(\Delta n_\mathrm{NL}= 0.005)\). Maximum allowed refractive index change for inner and outer scenarios before switch goes to saturation is \(\Delta n_\mathrm{NL }= 0.04\) (maximum tune-ability 8 nm) and \(\Delta n_\mathrm{NL }= 0.012\) (maximum tune-ability of 24 nm), respectively. Performance of add–drop filter is replicated by means of finite-difference time-domain method, and simulations displayed an ultra-compact size device with ultra-fast tune-ability speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication and Applications. Springer, Berlin (2004)CrossRef Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication and Applications. Springer, Berlin (2004)CrossRef
2.
Zurück zum Zitat Tavousi, A., Mansouri-Birjandis, M.A.: Study on the similarity of photonic crystal ring resonator cavity modes and whispering gallery-like modes in order of designing more efficient optical power dividers. Photonic Netw. Commun. 32, 160–170 (2016)CrossRef Tavousi, A., Mansouri-Birjandis, M.A.: Study on the similarity of photonic crystal ring resonator cavity modes and whispering gallery-like modes in order of designing more efficient optical power dividers. Photonic Netw. Commun. 32, 160–170 (2016)CrossRef
3.
Zurück zum Zitat Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanost. 83, 101–106 (2016)CrossRef Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanost. 83, 101–106 (2016)CrossRef
4.
Zurück zum Zitat Sun, H.-B., Matsuo, S., Misawa, H.: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999)CrossRef Sun, H.-B., Matsuo, S., Misawa, H.: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999)CrossRef
5.
Zurück zum Zitat Zhang, X.-D.: Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals. Front. Phys. China 1, 396–404 (2006)CrossRef Zhang, X.-D.: Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals. Front. Phys. China 1, 396–404 (2006)CrossRef
6.
Zurück zum Zitat Baba, T.: Photonic crystals: remember the light. Nat. Photonics 1, 11–12 (2007)CrossRef Baba, T.: Photonic crystals: remember the light. Nat. Photonics 1, 11–12 (2007)CrossRef
7.
Zurück zum Zitat Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add–drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quantum Electron. 47, 1–13 (2014) Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add–drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quantum Electron. 47, 1–13 (2014)
8.
Zurück zum Zitat Chen, T., Liu, P., Liu, J., Hong, Z.: A terahertz photonic crystal cavity with high Q-factors. Appl. Phys. B 115, 105–109 (2014)CrossRef Chen, T., Liu, P., Liu, J., Hong, Z.: A terahertz photonic crystal cavity with high Q-factors. Appl. Phys. B 115, 105–109 (2014)CrossRef
9.
Zurück zum Zitat Ozbay, E., Michel, E., Tuttle, G., Biswas, R., Ho, K., Bostak, J., et al.: Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Opt. Lett. 19, 1155–1157 (1994)CrossRef Ozbay, E., Michel, E., Tuttle, G., Biswas, R., Ho, K., Bostak, J., et al.: Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Opt. Lett. 19, 1155–1157 (1994)CrossRef
10.
Zurück zum Zitat Tavousi, A., Rostami, A., Rostami, G., Dolatyari, M.: 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J. Lightwave Technol 33, 4640–4647 (2015)CrossRef Tavousi, A., Rostami, A., Rostami, G., Dolatyari, M.: 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J. Lightwave Technol 33, 4640–4647 (2015)CrossRef
11.
Zurück zum Zitat Rakhshani, M., Mansouri-Birjandi, M.: Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 26, 1700–1707 (2012)CrossRef Rakhshani, M., Mansouri-Birjandi, M.: Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 26, 1700–1707 (2012)CrossRef
12.
Zurück zum Zitat Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97–101 (2013)CrossRef Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97–101 (2013)CrossRef
13.
Zurück zum Zitat Wang, Q., Ouyang, Z., Zheng, Y., Lin, M., Zheng, G.: Broadband six-port circulator based on magneto-optical-rod ring in photonic crystal. Appl. Phys. B 121, 385–389 (2015)CrossRef Wang, Q., Ouyang, Z., Zheng, Y., Lin, M., Zheng, G.: Broadband six-port circulator based on magneto-optical-rod ring in photonic crystal. Appl. Phys. B 121, 385–389 (2015)CrossRef
14.
Zurück zum Zitat Li, J.: Terahertz wave narrow bandpass filter based on photonic crystal. Opt. Commun. 283, 2647–2650 (2010)CrossRef Li, J.: Terahertz wave narrow bandpass filter based on photonic crystal. Opt. Commun. 283, 2647–2650 (2010)CrossRef
15.
Zurück zum Zitat Soon, B.Y., Haus, J., Scalora, M., Sibilia, C.: One-dimensional photonic crystal optical limiter. Opt. Express 11, 2007–2018 (2003)CrossRef Soon, B.Y., Haus, J., Scalora, M., Sibilia, C.: One-dimensional photonic crystal optical limiter. Opt. Express 11, 2007–2018 (2003)CrossRef
16.
Zurück zum Zitat Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027–1036 (2013)CrossRef Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027–1036 (2013)CrossRef
17.
Zurück zum Zitat Rostami, A., Rostami, G.: Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator. Opt. Commun. 228, 39–48 (2003)CrossRef Rostami, A., Rostami, G.: Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator. Opt. Commun. 228, 39–48 (2003)CrossRef
18.
Zurück zum Zitat Gong, Q.-H., Hu, X.-Y.: Ultrafast photonic crystal optical switching. Front. Phys. China 1, 171–177 (2006)CrossRef Gong, Q.-H., Hu, X.-Y.: Ultrafast photonic crystal optical switching. Front. Phys. China 1, 171–177 (2006)CrossRef
19.
Zurück zum Zitat Liu, Y., Qin, F., Zhou, F., Meng, Q.-B., Zhang, D.-Z., Li, Z.-Y.: Ultrafast optical switching in Kerr nonlinear photonic crystals. Front. Phys. China 5, 220–244 (2010)CrossRef Liu, Y., Qin, F., Zhou, F., Meng, Q.-B., Zhang, D.-Z., Li, Z.-Y.: Ultrafast optical switching in Kerr nonlinear photonic crystals. Front. Phys. China 5, 220–244 (2010)CrossRef
20.
Zurück zum Zitat Fang, Y.-T., Zhou, J., Pun, E.: High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Appl. Phys. B 86, 587–591 (2007)CrossRef Fang, Y.-T., Zhou, J., Pun, E.: High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Appl. Phys. B 86, 587–591 (2007)CrossRef
21.
Zurück zum Zitat Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik Int. J. Light Electron Opt. 123, 167–170 (2012)CrossRef Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik Int. J. Light Electron Opt. 123, 167–170 (2012)CrossRef
22.
Zurück zum Zitat Monifi, F., Djavid, M., Ghaffari, A., Abrishamian, M.: A New Bandstop Filter Based on Photonic Crystals. Proc. PIER, Cambridge (2008) Monifi, F., Djavid, M., Ghaffari, A., Abrishamian, M.: A New Bandstop Filter Based on Photonic Crystals. Proc. PIER, Cambridge (2008)
23.
Zurück zum Zitat Suh, W., Fan, S.: All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett. 84, 4905–4907 (2004)CrossRef Suh, W., Fan, S.: All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett. 84, 4905–4907 (2004)CrossRef
24.
Zurück zum Zitat Mansouri-Birjandi, M.A., Moravvej-farshi, M.K., Rostami, A.: Ultra-fast low threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach–Zehnder interferometer arm: based on 2D- photonic crystals. Appl. Opt. 47, 5041–5050 (2008)CrossRef Mansouri-Birjandi, M.A., Moravvej-farshi, M.K., Rostami, A.: Ultra-fast low threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach–Zehnder interferometer arm: based on 2D- photonic crystals. Appl. Opt. 47, 5041–5050 (2008)CrossRef
25.
Zurück zum Zitat Kopperschmidt, P.: Tunable band gaps in electro-optical photonic bi-oriented crystals. Appl. Phys. B 73, 717–720 (2001)CrossRef Kopperschmidt, P.: Tunable band gaps in electro-optical photonic bi-oriented crystals. Appl. Phys. B 73, 717–720 (2001)CrossRef
26.
Zurück zum Zitat Cuesta-Soto, F., Martinez, A., Garcia, J., Ramos, F., Sanchis, P., Blasco, J., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12, 161–167 (2004)CrossRef Cuesta-Soto, F., Martinez, A., Garcia, J., Ramos, F., Sanchis, P., Blasco, J., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12, 161–167 (2004)CrossRef
27.
Zurück zum Zitat Bristow, A., Wells, J.-P., Fan, W., Fox, A., Skolnick, M., Whittaker, D., et al.: Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides. Appl. Phys. Lett. 83, 851–853 (2003)CrossRef Bristow, A., Wells, J.-P., Fan, W., Fox, A., Skolnick, M., Whittaker, D., et al.: Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides. Appl. Phys. Lett. 83, 851–853 (2003)CrossRef
28.
Zurück zum Zitat Raineri, F., Cojocaru, C., Monnier, P., Levenson, A., Raj, R., Seassal, C., et al.: Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal. Appl. Phys. Lett. 85, 1880 (2004)CrossRef Raineri, F., Cojocaru, C., Monnier, P., Levenson, A., Raj, R., Seassal, C., et al.: Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal. Appl. Phys. Lett. 85, 1880 (2004)CrossRef
29.
Zurück zum Zitat Prakash, G.V., Cazzanelli, M., Gaburro, Z., Pavesi, L., Iacona, F., Franzo, G., et al.: Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 91, 4607–4610 (2002)CrossRef Prakash, G.V., Cazzanelli, M., Gaburro, Z., Pavesi, L., Iacona, F., Franzo, G., et al.: Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 91, 4607–4610 (2002)CrossRef
30.
Zurück zum Zitat Taflove, A., Hagness, S.C.: Computational Electrodynamics, vol. 160. Artech House, Boston (2000)MATH Taflove, A., Hagness, S.C.: Computational Electrodynamics, vol. 160. Artech House, Boston (2000)MATH
31.
Zurück zum Zitat Boriskin, A.V., Boriskina, S.V., Rolland, A., Sauleau, R., Nosich, A.I.: Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. JOSA A 25, 1169–1173 (2008)CrossRef Boriskin, A.V., Boriskina, S.V., Rolland, A., Sauleau, R., Nosich, A.I.: Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. JOSA A 25, 1169–1173 (2008)CrossRef
32.
Zurück zum Zitat Hodgson, N., Weber, H.: Optical resonators: fundamentals, advanced concepts, applications, vol. 108. Springer, Berlin (2005) Hodgson, N., Weber, H.: Optical resonators: fundamentals, advanced concepts, applications, vol. 108. Springer, Berlin (2005)
33.
Zurück zum Zitat Ilchenko, V.S., Matsko, A.B.: Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006)CrossRef Ilchenko, V.S., Matsko, A.B.: Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006)CrossRef
34.
Zurück zum Zitat Soljacic, M., Joannopoulos, J.: Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004)CrossRef Soljacic, M., Joannopoulos, J.: Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004)CrossRef
35.
Zurück zum Zitat Saleh, B.E., Teich, M.C., Saleh, B.E.: Fundamentals of Photonics, vol. 22. Wiley, New York (1991)CrossRef Saleh, B.E., Teich, M.C., Saleh, B.E.: Fundamentals of Photonics, vol. 22. Wiley, New York (1991)CrossRef
36.
Zurück zum Zitat Tavousi, A., Mansouri-birjandi, M.A., saffari, M.: Add-drop and channel-drop optical filters based on photonic crystal ring resonators. Int. J. Commun. Inf. Technol. (IJCIT) 2, 19–24 (2012) Tavousi, A., Mansouri-birjandi, M.A., saffari, M.: Add-drop and channel-drop optical filters based on photonic crystal ring resonators. Int. J. Commun. Inf. Technol. (IJCIT) 2, 19–24 (2012)
37.
Zurück zum Zitat Qiang, Z., Zhou, W., Soref, R.A.: Optical add–drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)CrossRef Qiang, Z., Zhou, W., Soref, R.A.: Optical add–drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)CrossRef
38.
Zurück zum Zitat Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. JOSA B 26, 10–16 (2009)CrossRef Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. JOSA B 26, 10–16 (2009)CrossRef
39.
Zurück zum Zitat Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)CrossRef Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)CrossRef
40.
Zurück zum Zitat Uchiyama, K., Kawanishi, S., Saruwatari, M.: Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC). Electron. Lett. 34, 575–576 (1998)CrossRef Uchiyama, K., Kawanishi, S., Saruwatari, M.: Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC). Electron. Lett. 34, 575–576 (1998)CrossRef
Metadaten
Titel
Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering
verfasst von
Alireza Tavousi
Mohammad Ali Mansouri-Birjandi
Majid Ghadrdan
Mina Ranjbar-Torkamani
Publikationsdatum
18.12.2016
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 1/2017
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-016-0680-x

Weitere Artikel der Ausgabe 1/2017

Photonic Network Communications 1/2017 Zur Ausgabe