Skip to main content
Erschienen in: Strength of Materials 2/2022

13.06.2022

On Thermomechanical Effects in Elastic Media with Reinforcing Rods (Fibers)

verfasst von: V. I. Gulyaev, V. V. Mozgovyi, L. V. Shevchuk, O. I. Bilobryts’ka

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Within the framework of the theory of thermoelasticity, the problem of investigating the influence of thermomechanical compatibility and incompatibility of parameters (thermal linear expansion coefficients, elastic moduli and Poisson’s ratios) of materials of a non-uniform system of an elastic medium and a reinforcing rod on the distribution of thermal stress fields in it is set. The system of solvable differential equations is constructed as a result of including the thermal influence factors into the Lame–Gadolin equation. For the cases of plane deformed and plane stressed states of an elastic rod of circular cross section in an elastic medium their analytical solutions have been found; expressions for thermoelastic displacements and stresses in the system have been obtained in finite form. The thermoelastic incompatibility condition for the materials of the medium and the reinforcement is formulated. The analysis of obtained relations shows that in the case of incompatible values of thermomechanical parameters of medium and reinforcement, under the action on the system of temperature disturbances, its reinforcement leads to the negative effect associated with an additional increase in thermal stresses. They are concentrated in a narrow zone of the medium, which is close to the surface of the body contact, and decrease inversely proportional to the square of the distance from the axis of the reinforcement to the isolated point. Examples of the thermomechanical joint combination of the material properties of cement concrete reinforced with steel bars and the incompatible properties of polyester-reinforced road pavements are presented. It is shown that in the road structure, the applied thermal stresses can reach high values, which may additionally contribute to the formation of imperceptible defects and cracks. More generally, the results obtained can be used to evaluate the thermomechanical properties of composite materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979). R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).
2.
Zurück zum Zitat V. I. Gulyaev, V. V. Mozgovyi, L. V. Shevchuk, et al., Thermoelastic State of Multilayer Road Pavements [in Ukrainian], NTU, Kyiv (2018). V. I. Gulyaev, V. V. Mozgovyi, L. V. Shevchuk, et al., Thermoelastic State of Multilayer Road Pavements [in Ukrainian], NTU, Kyiv (2018).
3.
Zurück zum Zitat Models for Predicting Reflection Cracking of Hot-Mix Asphalt Overlays, Research Report 669, Texas Transportation Institute, Texas A&M University, TX (2010). Models for Predicting Reflection Cracking of Hot-Mix Asphalt Overlays, Research Report 669, Texas Transportation Institute, Texas A&M University, TX (2010).
4.
Zurück zum Zitat N. Noda, R. B. Hetnarski, and Y. Tanigawa, Thermal Stresses, Taylor and Francis, New York (2003). N. Noda, R. B. Hetnarski, and Y. Tanigawa, Thermal Stresses, Taylor and Francis, New York (2003).
5.
Zurück zum Zitat G. I. Shishkin, “Method of splitting for singularly perturbed parabolic equations,” East-West J. Numer. Math., 1, No. 2, 147–163 (1993). G. I. Shishkin, “Method of splitting for singularly perturbed parabolic equations,” East-West J. Numer. Math., 1, No. 2, 147–163 (1993).
7.
Zurück zum Zitat G. S. Pisarenko, Resistance of Materials [in Russian], Vyshcha Shkola, Kiev (1986). G. S. Pisarenko, Resistance of Materials [in Russian], Vyshcha Shkola, Kiev (1986).
8.
Zurück zum Zitat Yu. M. Pleskachevskyii, Yu. A. Chigareva, and P. I. Shirvel’, Deformation and Fracture of Structural Elements Made of Heterogeneous Materials under Thermoloading Conditions [in Russian], BNTU, Minsk (2018). Yu. M. Pleskachevskyii, Yu. A. Chigareva, and P. I. Shirvel’, Deformation and Fracture of Structural Elements Made of Heterogeneous Materials under Thermoloading Conditions [in Russian], BNTU, Minsk (2018).
9.
Zurück zum Zitat T. G. Beleicheva and K. K. Ziling, “Thermoelastic axisymmetric problem for a two-layer cylinder,” J. Appl. Mech. Tech. Phy., 19, 108–113 (1978).CrossRef T. G. Beleicheva and K. K. Ziling, “Thermoelastic axisymmetric problem for a two-layer cylinder,” J. Appl. Mech. Tech. Phy., 19, 108–113 (1978).CrossRef
10.
Zurück zum Zitat A. D. Kovalenko, Thermoelasticity: Basic Theory and Applications, Wolters-Noordhoff Groningen, The Netherlands (1972) A. D. Kovalenko, Thermoelasticity: Basic Theory and Applications, Wolters-Noordhoff Groningen, The Netherlands (1972)
11.
Zurück zum Zitat D. E. Carlson, Linear Thermoelasticity, in: C. Trusdell (Ed.), Encyclopedia of Physics, Vol. VIa/2, Springer, Berlin (1972), pp. 297–345. D. E. Carlson, Linear Thermoelasticity, in: C. Trusdell (Ed.), Encyclopedia of Physics, Vol. VIa/2, Springer, Berlin (1972), pp. 297–345.
12.
Zurück zum Zitat R. B. Hetnarski and J. Ignaczak, Mathematical Theory of Elasticity, Taylor and Francis, New York (2004). R. B. Hetnarski and J. Ignaczak, Mathematical Theory of Elasticity, Taylor and Francis, New York (2004).
13.
Zurück zum Zitat W. Nowacki, Thermoelasticity, PWN – Polish Scientific Publishers, Warsaw, and Pergamon Press, Oxford (1986). W. Nowacki, Thermoelasticity, PWN – Polish Scientific Publishers, Warsaw, and Pergamon Press, Oxford (1986).
14.
Zurück zum Zitat S. E. Kravchenko and D. L. Serikov, “Low-temperature stresses as a criterion for the influence of asphalt concrete mixture components on the crack resistance of asphalt concrete pavements,” Avtomob. Dorog. Mosty, No. 2, 70–77 (2010). S. E. Kravchenko and D. L. Serikov, “Low-temperature stresses as a criterion for the influence of asphalt concrete mixture components on the crack resistance of asphalt concrete pavements,” Avtomob. Dorog. Mosty, No. 2, 70–77 (2010).
Metadaten
Titel
On Thermomechanical Effects in Elastic Media with Reinforcing Rods (Fibers)
verfasst von
V. I. Gulyaev
V. V. Mozgovyi
L. V. Shevchuk
O. I. Bilobryts’ka
Publikationsdatum
13.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00392-5

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.