Skip to main content
Erschienen in: Strength of Materials 2/2022

13.06.2022

On Experimental Procedure Development for Evaluating the Effect of Biaxial Loading on the Static Crack Resistance Characteristics of Reactor Vessel Steels

verfasst von: V. V. Pokrovs’kyi, V. G. Sidyachenko, V. M. Ezhov

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

According to modern normative documents, the loading of postulated cracks in reactor vessels and standard specimens during crack resistance tests has a number of differences, namely: biaxiality of certain load configurations on the crack faces can change during non-isothermal, nonmonotonic processes under emergency modes of thermal shock, while crack front have a semi-elliptical shape of with relative depth ratio of 0.1–0.15. These factors prompt the development of an experimental technique to study crack resistance on non-standard type specimens. Cross-shaped (cruciform) bending specimens with a semi-elliptic surface crack and a through linear short crack, as well as model strip specimens with similar cracks in previous tests, were designed and studied for their static fracture strength. A method for monitoring fatigue crack initiation on a cross-shaped specimen by changes in its suppleness has been proposed. Evolution of semi-elliptic crack front shape at its initiation from a surface stress raiser under cyclic bending load has been investigated and the possibility of obtaining fatigue semi-elliptic crack of a certain configuration close to the postulated, according to the normative documents of cracks was shown. On the basis of test results, it was established that at temperature 20°C for 15Kh2NMFA-A steel, the standard conditions of a plane deformation in the used specimens were not satisfied, leading to the overestimated values of crack resistance since the steel ductile-brittle transition temperature T0 (according to the Master-curve) was much lower. It was shown that the obtained increase in crack resistance under equal-axial bending is comparable with literature sources for the conditions of large-scale yielding with uniaxial loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASTM E399-19. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials, ASTM International, West Conshohocken, PA (2019). ASTM E399-19. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials, ASTM International, West Conshohocken, PA (2019).
2.
Zurück zum Zitat PNAE G-7-002-86. Strength Calculation Norms for Equipment and Pipelines of Nuclear Power Plants [in Russian], Gosatomnadzor of the USSR, Moscow (1989). PNAE G-7-002-86. Strength Calculation Norms for Equipment and Pipelines of Nuclear Power Plants [in Russian], Gosatomnadzor of the USSR, Moscow (1989).
3.
Zurück zum Zitat RD EO 0606-2005. Methodology for Calculating the Brittle Fracture Resistance of WWER Reactor Pressure Vessels during Operation (MRKR-SKhR-2000) [in Russian], St. Petersburg–Moscow (2005). RD EO 0606-2005. Methodology for Calculating the Brittle Fracture Resistance of WWER Reactor Pressure Vessels during Operation (MRKR-SKhR-2000) [in Russian], St. Petersburg–Moscow (2005).
4.
Zurück zum Zitat MT-D.0.03.391-09. Methodology for Assessment of Strength and Service Life of WWER Reactor Pressure Vessels during Operation [in Russian], SE NAEK “Energoatom” (2009). MT-D.0.03.391-09. Methodology for Assessment of Strength and Service Life of WWER Reactor Pressure Vessels during Operation [in Russian], SE NAEK “Energoatom” (2009).
5.
Zurück zum Zitat V. V. Pokrovsky, V. T. Troshchenko, G. A. Kopchinsky, et al., “The influence of plastic prestraining on brittle fracture resistance of metallic materials with cracks,” Fatigue Fract. Eng. Mater. Struct., 18, No. 6, 731–746 (1995).CrossRef V. V. Pokrovsky, V. T. Troshchenko, G. A. Kopchinsky, et al., “The influence of plastic prestraining on brittle fracture resistance of metallic materials with cracks,” Fatigue Fract. Eng. Mater. Struct., 18, No. 6, 731–746 (1995).CrossRef
6.
Zurück zum Zitat V. V. Pokrovsky, V. T. Troshchenko, V. G. Kaplunenko, et al., “A promising method for enhancing resistance of pressure vessels to brittle fracture,” Int. J. Pres. Ves. Pip. 58, 9–24 (1994).CrossRef V. V. Pokrovsky, V. T. Troshchenko, V. G. Kaplunenko, et al., “A promising method for enhancing resistance of pressure vessels to brittle fracture,” Int. J. Pres. Ves. Pip. 58, 9–24 (1994).CrossRef
7.
Zurück zum Zitat G. Chell, “The effects of sub-critical crack growth on the fracture behavior of cracked ferritic steels after warm prestressing,” Fatigue Fract. Eng. Mater. Struct., 9, 259–274 (1986).CrossRef G. Chell, “The effects of sub-critical crack growth on the fracture behavior of cracked ferritic steels after warm prestressing,” Fatigue Fract. Eng. Mater. Struct., 9, 259–274 (1986).CrossRef
8.
Zurück zum Zitat K. Wallin, “Master curve implementation of the warm prestress effect,” Eng. Fract. Mech., 70, 2587–2602 (2003).CrossRef K. Wallin, “Master curve implementation of the warm prestress effect,” Eng. Fract. Mech., 70, 2587–2602 (2003).CrossRef
9.
Zurück zum Zitat T. D. Swankie and D. J. Smith, “Low temperature mixed mode fracture of a pressure vessel steel subject to prior loading,” Eng. Fract. Mech., 61, 387–405 (1998).CrossRef T. D. Swankie and D. J. Smith, “Low temperature mixed mode fracture of a pressure vessel steel subject to prior loading,” Eng. Fract. Mech., 61, 387–405 (1998).CrossRef
11.
Zurück zum Zitat V. Pokrovskii, V. Sidyachenko, and V. Ezhov, “Numerical-experimental study of the viscosity of fracture of heat-resistant reactor steels with allowance for different modes of preliminary thermomechanical loading,” Vestn. TNTU, Special Issue, Part 1, 66–73 (2011). V. Pokrovskii, V. Sidyachenko, and V. Ezhov, “Numerical-experimental study of the viscosity of fracture of heat-resistant reactor steels with allowance for different modes of preliminary thermomechanical loading,” Vestn. TNTU, Special Issue, Part 1, 66–73 (2011).
12.
Zurück zum Zitat B. Z. Margolin and V. I. Kostylev, “Analysis of biaxial loading effect on fracture toughnes of reactor pressure vessel steels,” Int. J. Pres. Ves. Pip., 75, 589–601 (1998).CrossRef B. Z. Margolin and V. I. Kostylev, “Analysis of biaxial loading effect on fracture toughnes of reactor pressure vessel steels,” Int. J. Pres. Ves. Pip., 75, 589–601 (1998).CrossRef
13.
Zurück zum Zitat R. E. Link, J. A. Joyce, and C. Roe, “An experimental investigation of the effect of biaxial loading on the master curve transition temperature in RPV steels,” Eng. Fract. Mech., 74, 2824–2843 (2007).CrossRef R. E. Link, J. A. Joyce, and C. Roe, “An experimental investigation of the effect of biaxial loading on the master curve transition temperature in RPV steels,” Eng. Fract. Mech., 74, 2824–2843 (2007).CrossRef
14.
Zurück zum Zitat J. Hohe, S. Luckow, V. Hardenacke, et al., “Enhanced fracture assessment under biaxial external loads using amall scale cruciform bending specimens,” Eng. Fract. Mech., 78, 1876–1894 (2011).CrossRef J. Hohe, S. Luckow, V. Hardenacke, et al., “Enhanced fracture assessment under biaxial external loads using amall scale cruciform bending specimens,” Eng. Fract. Mech., 78, 1876–1894 (2011).CrossRef
15.
Zurück zum Zitat W. J. McAfee, B. R. Bass, J. W. Bryson, Jr, and W. E. Pennel, Biaxial Loading Effects on Fracture Toughness of Reactor Pressure Vessel Steel, NREG/CR-6273, Nuclear Regulatory Commission, Washington, DC (1995). W. J. McAfee, B. R. Bass, J. W. Bryson, Jr, and W. E. Pennel, Biaxial Loading Effects on Fracture Toughness of Reactor Pressure Vessel Steel, NREG/CR-6273, Nuclear Regulatory Commission, Washington, DC (1995).
16.
Zurück zum Zitat D. Lidbury (Ed.), Validation of Constraint-Based Assessment Methodology in Structural Integrity (VOCALIST), Final Report (2006). D. Lidbury (Ed.), Validation of Constraint-Based Assessment Methodology in Structural Integrity (VOCALIST), Final Report (2006).
17.
Zurück zum Zitat N. G. Taylor, K.-F. Nilsson, P. Minnebo, et al., NESC-IV Project, An Investigation of the Transferability of Master Curve Technology to Shallow Flaws in Reactor Pressure Vessel Applications, Final Report, European Commission (2005). N. G. Taylor, K.-F. Nilsson, P. Minnebo, et al., NESC-IV Project, An Investigation of the Transferability of Master Curve Technology to Shallow Flaws in Reactor Pressure Vessel Applications, Final Report, European Commission (2005).
18.
Zurück zum Zitat B. R. Bass, J. W. Bryson, W. J. McAfee, et al., “Design of a cruciform bend specimen for determination of out-of-plane biaxial tensile stress effects on fracture toughness for shallow cracks,” in: SMiRT-12, CONF-930803-13 (1993). B. R. Bass, J. W. Bryson, W. J. McAfee, et al., “Design of a cruciform bend specimen for determination of out-of-plane biaxial tensile stress effects on fracture toughness for shallow cracks,” in: SMiRT-12, CONF-930803-13 (1993).
19.
Zurück zum Zitat A. Obermeier, “CABINET: Constraint and Biaxial Loading Effects and Their Interaction Considering Thermal Transients (WPS),” in: Proc. of the 3rd Int. Conf. on NPP Life Management (PLiM), Salt Lake City, USA (2012). A. Obermeier, “CABINET: Constraint and Biaxial Loading Effects and Their Interaction Considering Thermal Transients (WPS),” in: Proc. of the 3rd Int. Conf. on NPP Life Management (PLiM), Salt Lake City, USA (2012).
20.
21.
Zurück zum Zitat Y. Murakami, Stress Intensity Factors Handbook, Vol. 2, Pergamon Press, Oxford–New York (1987). Y. Murakami, Stress Intensity Factors Handbook, Vol. 2, Pergamon Press, Oxford–New York (1987).
22.
Zurück zum Zitat V. V. Panasyuk, A. I. Sushinskii, and L.V. Katsov, Fracture of Structural Elements with Non-Cross Cracks [in Russian], Naukova Dumka, Kiev (1991). V. V. Panasyuk, A. I. Sushinskii, and L.V. Katsov, Fracture of Structural Elements with Non-Cross Cracks [in Russian], Naukova Dumka, Kiev (1991).
23.
Zurück zum Zitat GOST 25.506-85. Calculations and Strength Tests. Methods of Mechanical Tests of Metals. Determination of Crack Resistance Characteristics (Fracture Toughness) under Static Loading [in Russian], Valid since January 1, 1986. GOST 25.506-85. Calculations and Strength Tests. Methods of Mechanical Tests of Metals. Determination of Crack Resistance Characteristics (Fracture Toughness) under Static Loading [in Russian], Valid since January 1, 1986.
24.
Zurück zum Zitat ASTM E1820-20b. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2020). ASTM E1820-20b. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2020).
25.
Zurück zum Zitat V. S. Barbosa and C. Ruggieri, “Fracture toughness testing using non-standard bend specimens, Part I: Constraint effects and development of test procedure,” Eng. Fract. Mech., 195, 279–296 (2018).CrossRef V. S. Barbosa and C. Ruggieri, “Fracture toughness testing using non-standard bend specimens, Part I: Constraint effects and development of test procedure,” Eng. Fract. Mech., 195, 279–296 (2018).CrossRef
26.
Zurück zum Zitat Y. Lei, “J-integral and limit load analysis of semi-elliptical surface cracks in plates under bending,” Int. J. Pres. Ves. Pip., 81, 31–41 (2004).CrossRef Y. Lei, “J-integral and limit load analysis of semi-elliptical surface cracks in plates under bending,” Int. J. Pres. Ves. Pip., 81, 31–41 (2004).CrossRef
27.
Zurück zum Zitat V. T. Troshchenko, V. V. Pokrovskii, and V. G. Kaplunenko, “Prediction of crack resistance for heat-resistant steels taking into account the specimen size effect. Communication 1. Results of experimental investigations,” Strength Mater., 29, No. 1, 1–15 (1997), https://doi.org/10.1007/BF02767570.CrossRef V. T. Troshchenko, V. V. Pokrovskii, and V. G. Kaplunenko, “Prediction of crack resistance for heat-resistant steels taking into account the specimen size effect. Communication 1. Results of experimental investigations,” Strength Mater., 29, No. 1, 1–15 (1997), https://​doi.​org/​10.​1007/​BF02767570.CrossRef
Metadaten
Titel
On Experimental Procedure Development for Evaluating the Effect of Biaxial Loading on the Static Crack Resistance Characteristics of Reactor Vessel Steels
verfasst von
V. V. Pokrovs’kyi
V. G. Sidyachenko
V. M. Ezhov
Publikationsdatum
13.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00394-3

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.