Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2013

01.01.2013 | LCA FOR FOOD PRODUCTS

Life cycle environmental impacts of carbonated soft drinks

verfasst von: David Amienyo, Haruna Gujba, Heinz Stichnothe, Adisa Azapagic

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The UK carbonated drinks sector was worth £8 billion in 2010 and is growing at an annual rate of 4.9 %. In an attempt to provide a better understanding of the environmental impacts of this sector, this paper presents, for the first time, the full life cycle impacts of carbonated soft drinks manufactured and consumed in the UK. Two functional units are considered: 1 l of packaged drink and total annual production of carbonated drinks in the UK. The latter has been used to estimate the impacts at the sectoral level. The system boundary is from ‘cradle to grave’. Different packaging used for carbonated drinks is considered: glass bottles (0.75 l), aluminium cans (0.33 l) and polyethylene terephthalate (PET) bottles (0.5 and 2 l).

Materials and methods

The study has been carried out following the ISO 14040/44 life cycle assessment (LCA) methodology. Data have been sourced from a drink manufacturer as well as the CCaLC, Ecoinvent and Gabi databases. The LCA software tools CCaLC v2.0 and GaBi 4.3 have been used for LCA modelling. The environmental impacts have been estimated according to the CML 2001 method.

Results and discussion

Packaging is the main hotspot for most environmental impacts, contributing between 59 and 77 %. The ingredients account between 7 and 14 % mainly due to sugar; the manufacturing stage contributes 5–10 %, largely due to the energy for filling and packaging. Refrigeration of the drink at retailer increases global warming potential by up to 33 %. Transport contributes up to 7 % to the total impacts.

Conclusions

The drink packaged in 2 l PET bottles is the most sustainable option for most impacts, including the carbon footprint, while the drink in glass bottles is the worst option. However, reusing glass bottles three times would make the carbon footprint of the drink in glass bottles comparable to that in aluminium cans and 0.5 l PET bottles. If recycling of PET bottles is increased to 60 %, the glass bottle would need to be reused 20 times to make their carbon footprints comparable. The estimates at the sectoral level indicate that the carbonated drinks in the UK are responsible for over 1.5 million tonnes of CO2 eq. emissions per year. This represented 13 % of the GHG emissions from the whole food and drink sector or 0.26 % of the UK total emissions in 2010.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Estimated based on the contribution of the food and drink sector of 2 % to total UK GHG emissions (FDF 2008; Defra 2006).
 
2
UK GHG emissions in 2010 are estimated at 582.4 million tonnes CO2 eq. (DECC 2011).
 
Literatur
Zurück zum Zitat Bohnet M, Brinker CJ, Cornils B (eds) (2003) Ullmann’s encyclopaedia of industrial chemistry. Wiley, New York Bohnet M, Brinker CJ, Cornils B (eds) (2003) Ullmann’s encyclopaedia of industrial chemistry. Wiley, New York
Zurück zum Zitat BSI (2005) Refrigerated display cabinets—part 2: classification, requirements and test conditions. British Standards Institution, London BSI (2005) Refrigerated display cabinets—part 2: classification, requirements and test conditions. British Standards Institution, London
Zurück zum Zitat Defra (2007) Market transformation programme, BNCR: 36: direct emission of refrigerant gases. Department for Environment, Food and Rural Affairs, London Defra (2007) Market transformation programme, BNCR: 36: direct emission of refrigerant gases. Department for Environment, Food and Rural Affairs, London
Zurück zum Zitat Guinée JB, Gorrèe M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2001) Life cycle assessment, an operational guide to the ISO standards. Kluwer, Dordrecht, The Netherlands Guinée JB, Gorrèe M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2001) Life cycle assessment, an operational guide to the ISO standards. Kluwer, Dordrecht, The Netherlands
Zurück zum Zitat Gujba H, Azapagic A (2010) Carbon footprint of liquid beverage packaging in the UK. The University of Manchester, Manchester Gujba H, Azapagic A (2010) Carbon footprint of liquid beverage packaging in the UK. The University of Manchester, Manchester
Zurück zum Zitat Pasqualino J, Meneses M, Castells F (2011) The carbon footprint and energy consumption of beverage packaging selection and disposal. J Food Eng 103(4):357–365CrossRef Pasqualino J, Meneses M, Castells F (2011) The carbon footprint and energy consumption of beverage packaging selection and disposal. J Food Eng 103(4):357–365CrossRef
Zurück zum Zitat Ramjeawon T (2004) Life cycle assessment of cane-sugar on the Island of Mauritius. Int J Life Cycle Assess 9(4):254–260CrossRef Ramjeawon T (2004) Life cycle assessment of cane-sugar on the Island of Mauritius. Int J Life Cycle Assess 9(4):254–260CrossRef
Zurück zum Zitat van Baxter D (2002) Advances in supermarket refrigeration systems. 7th Int. Energy Agency Conference on Heat Pumping Technologies. May 19–22, 2002 Beijing, China van Baxter D (2002) Advances in supermarket refrigeration systems. 7th Int. Energy Agency Conference on Heat Pumping Technologies. May 19–22, 2002 Beijing, China
Zurück zum Zitat Vellini M, Savioli M (2009) Energy and environmental analysis of glass container production and recycling. Energy 34(12):2137–2143CrossRef Vellini M, Savioli M (2009) Energy and environmental analysis of glass container production and recycling. Energy 34(12):2137–2143CrossRef
Zurück zum Zitat Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recycl 55:865–875CrossRef Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recycl 55:865–875CrossRef
Metadaten
Titel
Life cycle environmental impacts of carbonated soft drinks
verfasst von
David Amienyo
Haruna Gujba
Heinz Stichnothe
Adisa Azapagic
Publikationsdatum
01.01.2013
Verlag
Springer-Verlag
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2013
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-012-0459-y

Weitere Artikel der Ausgabe 1/2013

The International Journal of Life Cycle Assessment 1/2013 Zur Ausgabe