Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2015

01.03.2015

Effect of Cooling Rate on the Dendrite Coherency Point During Solidification of Al2024 Alloy

verfasst von: M. H. Ghoncheh, S. G. Shabestari

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most research related to dendrite coherency point (DCP) has been done on cast aluminum alloys and at a low cooling rate condition. In this research, the DCP of a wrought aluminum alloy is calculated in the range of high cooling rates used in the direct-chill casting process. The two-thermocouple thermal analysis technique was used to determine the DCP of Al2024 alloy. The aim of this work is to investigate the effect of different cooling rates on the dendrite coherency characteristics of Al2024. The cooling rates used in the present study range from 0.4 to 17.5 °C s−1. Also, the effect of 1.2 wt pct Al-5Ti-1B grain refiner on the DCP was studied. To calculate the solid fraction at dendrite coherency, solid fraction versus time is plotted based on Newtonian technique. The results show that by increasing the cooling rate, both time and temperature of dendrite coherency are decreased. Also, by adding the Al-5Ti-1B master alloy, dendrite coherency temperature is reduced and dendrite impingement is postponed. To reduce casting defects occurring during equiaxed solidification, e.g., macrosegregation, porosities, and hot tearing, these two operations which lead to postpone the transition from mass to inter-dendritic feeding, or dendrite coherency, can be useful. By increasing the cooling rate, solid fraction at dendrite coherency increases initially and then decreases at higher cooling rates. Presence of grain refiner leads to increasing of solid fraction at DCP. Thus, by delaying the dendrite coherency and increasing the solid fraction at DCP, semi-solid forming can be performed on parts with higher solid fraction and less shrinkage. Microstructural evaluation was carried out to present the correlation between the cooling rate and solid fraction in 2024 aluminum alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
OMEGA Engineering Inc., Stamford, Connecticut, USA.
 
2
Trademark of Standard Oil Engineering Materials Co., Niagara Falls, NY.
 
3
Origin Lab Corporation, Northampton, MA.
 
4
Clemex Technologies Inc., Longueil, Quebec, Canada.
 
Literatur
1.
Zurück zum Zitat B. Meylan, S. Terzi, C.M. Gourlay, and A.K. Dahle: Acta. Mater., 2011, vol. 59, pp. 3091–3101.CrossRef B. Meylan, S. Terzi, C.M. Gourlay, and A.K. Dahle: Acta. Mater., 2011, vol. 59, pp. 3091–3101.CrossRef
2.
Zurück zum Zitat L. Yuan, C. O’Sullivan, and C.M. Gourlay: Acta. Mater., 2012, vol. 60, pp. 1334–45.CrossRef L. Yuan, C. O’Sullivan, and C.M. Gourlay: Acta. Mater., 2012, vol. 60, pp. 1334–45.CrossRef
3.
Zurück zum Zitat A. Stangeland, A. Mo, Ø. Nielsen, D.G. Eskin, and M. M’hamdi: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2903–15.CrossRef A. Stangeland, A. Mo, Ø. Nielsen, D.G. Eskin, and M. M’hamdi: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2903–15.CrossRef
4.
Zurück zum Zitat R. Chavez-Zamarripa, J.A. Ramos-Salas, J. Talamantes-Silva, S. Valtierra, and R. Colas: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1875–79.CrossRef R. Chavez-Zamarripa, J.A. Ramos-Salas, J. Talamantes-Silva, S. Valtierra, and R. Colas: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1875–79.CrossRef
5.
Zurück zum Zitat M. Malekan, and S.G. Shabestari: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3196–3203.CrossRef M. Malekan, and S.G. Shabestari: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3196–3203.CrossRef
6.
Zurück zum Zitat A.K. Dahle and D.H. StJohn: Acta. Mater., 1999, vol. 47, pp. 31–41.CrossRef A.K. Dahle and D.H. StJohn: Acta. Mater., 1999, vol. 47, pp. 31–41.CrossRef
7.
Zurück zum Zitat A.R.E. Singer and S.A. Cottrell: J. Inst. Met., 1947, vol. 73, pp. 33–73. A.R.E. Singer and S.A. Cottrell: J. Inst. Met., 1947, vol. 73, pp. 33–73.
8.
Zurück zum Zitat D.B. Spencer, R. Mehrabian, and M.C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32.CrossRef D.B. Spencer, R. Mehrabian, and M.C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32.CrossRef
9.
Zurück zum Zitat G. Chai, L. Backerud, T. RØlland, and L. Arnberg: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 965–70.CrossRef G. Chai, L. Backerud, T. RØlland, and L. Arnberg: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 965–70.CrossRef
10.
Zurück zum Zitat M.B. Djurdjevic, J.H. Sokolowski, and Z. Odanovic: J. Therm. Anal. Calorim., 2012, vol. 109, pp. 875–82.CrossRef M.B. Djurdjevic, J.H. Sokolowski, and Z. Odanovic: J. Therm. Anal. Calorim., 2012, vol. 109, pp. 875–82.CrossRef
11.
Zurück zum Zitat G. Chai, L. Backerud, and L. Arnberg: Mater. Sci. Technol., 1995, vol. 11, pp. 1099–1103.CrossRef G. Chai, L. Backerud, and L. Arnberg: Mater. Sci. Technol., 1995, vol. 11, pp. 1099–1103.CrossRef
13.
Zurück zum Zitat L. Arnberg, L. Backerud, and G. Chai: Mater. Sci. Eng. A, 1993, vol. 173, pp. 101–103.CrossRef L. Arnberg, L. Backerud, and G. Chai: Mater. Sci. Eng. A, 1993, vol. 173, pp. 101–103.CrossRef
14.
Zurück zum Zitat A. Cibula: J. Inst. Met., 1949, vol. 76, pp. 321–60. A. Cibula: J. Inst. Met., 1949, vol. 76, pp. 321–60.
15.
Zurück zum Zitat F.A. Crossley and L.F. Mondolfo: Trans. AIME, 1951, vol. 191, pp. 1143–48. F.A. Crossley and L.F. Mondolfo: Trans. AIME, 1951, vol. 191, pp. 1143–48.
16.
Zurück zum Zitat L. Arnberg, L. Backerud, and G. Chai: Solidification Characteristics of Aluminum Alloys, Vol. 3: Dendrite Coherency, AFS, USA, Des Plaines, 1996. L. Arnberg, L. Backerud, and G. Chai: Solidification Characteristics of Aluminum Alloys, Vol. 3: Dendrite Coherency, AFS, USA, Des Plaines, 1996.
17.
Zurück zum Zitat R. Gholizadeh and S.G. Shabestari: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3447–58.CrossRef R. Gholizadeh and S.G. Shabestari: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3447–58.CrossRef
18.
Zurück zum Zitat L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys. Vol. 1: Wrought Aluminum Alloys, Skan Aluminum, Sweden, 1986. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys. Vol. 1: Wrought Aluminum Alloys, Skan Aluminum, Sweden, 1986.
19.
Zurück zum Zitat H. Jiang, W.T. Kierkus, and J.H. Sokolowski: AFS. Trans., 1999, vol. 107, pp. 169–72. H. Jiang, W.T. Kierkus, and J.H. Sokolowski: AFS. Trans., 1999, vol. 107, pp. 169–72.
20.
Zurück zum Zitat R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421–80.CrossRef R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421–80.CrossRef
21.
Zurück zum Zitat M. Malekan and S.G. Shabestari: J. Therm. Anal. Calorim., 2011, vol. 103, pp. 453–58.CrossRef M. Malekan and S.G. Shabestari: J. Therm. Anal. Calorim., 2011, vol. 103, pp. 453–58.CrossRef
22.
Zurück zum Zitat P.S. Mohanty and J.E. Gruzleski: Acta. Metall. Mater., 1995, vol. 43, pp. 2001–12.CrossRef P.S. Mohanty and J.E. Gruzleski: Acta. Metall. Mater., 1995, vol. 43, pp. 2001–12.CrossRef
23.
Zurück zum Zitat A.K. Dahle and L. Arnberg: Mater. Sci. Eng. A, 1997, vol. 225, pp. 38–46.CrossRef A.K. Dahle and L. Arnberg: Mater. Sci. Eng. A, 1997, vol. 225, pp. 38–46.CrossRef
24.
Zurück zum Zitat M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.CrossRef M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.CrossRef
25.
Zurück zum Zitat M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.CrossRef M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.CrossRef
26.
Zurück zum Zitat S. Gowri and F.H. Samuel: Metall. Trans. A, 1992, vol. 23A, pp. 3369–76. S. Gowri and F.H. Samuel: Metall. Trans. A, 1992, vol. 23A, pp. 3369–76.
27.
Zurück zum Zitat P.G. Shewmon: Diffusion in Solids, 1st ed., McGraw-Hill, New York, 1963. P.G. Shewmon: Diffusion in Solids, 1st ed., McGraw-Hill, New York, 1963.
28.
29.
Zurück zum Zitat M. Johnsson, L. Backerud, and G.K. Sigworth: Metall. Trans. A, 1993, vol. 24A, pp. 481–91.CrossRef M. Johnsson, L. Backerud, and G.K. Sigworth: Metall. Trans. A, 1993, vol. 24A, pp. 481–91.CrossRef
30.
Zurück zum Zitat S.G. Shabestari and M. Malekan: J. Alloys. Compd., 2010, vol. 492, pp. 134–42.CrossRef S.G. Shabestari and M. Malekan: J. Alloys. Compd., 2010, vol. 492, pp. 134–42.CrossRef
31.
Zurück zum Zitat E. Khajeh and D.M. Maijer: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 158–69.CrossRef E. Khajeh and D.M. Maijer: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 158–69.CrossRef
32.
Zurück zum Zitat R. Nadella, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 450–61.CrossRef R. Nadella, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 450–61.CrossRef
33.
Zurück zum Zitat A.K. Dahle, P.A. Tondel, C.J. Paradies, and L. Arnberg: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2305–13.CrossRef A.K. Dahle, P.A. Tondel, C.J. Paradies, and L. Arnberg: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2305–13.CrossRef
34.
Zurück zum Zitat A.K. Dahle, H.J. Thevik, L. Arnberg, and D.H. StJohn: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 287–93.CrossRef A.K. Dahle, H.J. Thevik, L. Arnberg, and D.H. StJohn: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 287–93.CrossRef
35.
Zurück zum Zitat S. Li, K. Sadayappan, and D. Apelian: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 614–23.CrossRef S. Li, K. Sadayappan, and D. Apelian: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 614–23.CrossRef
36.
Zurück zum Zitat J.W. Gibbs, M.J. Kaufman, R.E. Hackenberg, and P.F. Mendez: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2216–23.CrossRef J.W. Gibbs, M.J. Kaufman, R.E. Hackenberg, and P.F. Mendez: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2216–23.CrossRef
37.
Zurück zum Zitat V.A. Hosseini, S.G. Shabestari, and R. Gholizadeh: J. Mater. Des., 2013, vol. 50, pp. 7–14.CrossRef V.A. Hosseini, S.G. Shabestari, and R. Gholizadeh: J. Mater. Des., 2013, vol. 50, pp. 7–14.CrossRef
38.
Zurück zum Zitat S.G. Shabestari and S. Ghodrat: Mater. Sci. Eng. A, 2007, vol. 467, pp. 150–58.CrossRef S.G. Shabestari and S. Ghodrat: Mater. Sci. Eng. A, 2007, vol. 467, pp. 150–58.CrossRef
39.
Zurück zum Zitat S.G. Shabestari, M.H. Ghoncheh, and H. Momeni: Thermochim. Acta., 2014, vol. 589, pp. 174–82.CrossRef S.G. Shabestari, M.H. Ghoncheh, and H. Momeni: Thermochim. Acta., 2014, vol. 589, pp. 174–82.CrossRef
40.
Zurück zum Zitat W. Kasprzak, M. Sahoo, J.H. Sokolowski, H. Yamagata, and H. Kurita: Int. J. Metalcasting, 2009, vol. 3, pp. 55–71.CrossRef W. Kasprzak, M. Sahoo, J.H. Sokolowski, H. Yamagata, and H. Kurita: Int. J. Metalcasting, 2009, vol. 3, pp. 55–71.CrossRef
41.
Zurück zum Zitat M.H. Ghoncheh, S.G. Shabestari, and M.H. Abbasi: J. Therm. Anal. Calorim., 2014, vol. 117, pp. 1253–61.CrossRef M.H. Ghoncheh, S.G. Shabestari, and M.H. Abbasi: J. Therm. Anal. Calorim., 2014, vol. 117, pp. 1253–61.CrossRef
42.
Zurück zum Zitat M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49, pp. 1867–78.CrossRef M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49, pp. 1867–78.CrossRef
43.
Zurück zum Zitat A. Hellawell: The Metals Society, Philadelphia, 1977, pp. 161–72. A. Hellawell: The Metals Society, Philadelphia, 1977, pp. 161–72.
45.
Zurück zum Zitat M. Qian, D.H. StJohn, and M.T. Frost: Scripta Mater., 2002, vol. 46, pp. 649–54.CrossRef M. Qian, D.H. StJohn, and M.T. Frost: Scripta Mater., 2002, vol. 46, pp. 649–54.CrossRef
46.
Zurück zum Zitat M. Easton, C. Davidson, and D.H. StJohn: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1528–38.CrossRef M. Easton, C. Davidson, and D.H. StJohn: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1528–38.CrossRef
47.
Zurück zum Zitat D. Gloria and J.E. Gruzleski: AFS. Trans., 1999, vol. 107, pp. 419–24. D. Gloria and J.E. Gruzleski: AFS. Trans., 1999, vol. 107, pp. 419–24.
Metadaten
Titel
Effect of Cooling Rate on the Dendrite Coherency Point During Solidification of Al2024 Alloy
verfasst von
M. H. Ghoncheh
S. G. Shabestari
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2697-z

Weitere Artikel der Ausgabe 3/2015

Metallurgical and Materials Transactions A 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.