Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2016

22.09.2015

The Role of Granule Size on the Kinetics of Electrochemical Reduction of SiO2 Granules in Molten CaCl2

verfasst von: Xiao Yang, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, Takayuki Homma

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a fundamental study to develop a new process for producing solar-grade silicon, the effect of granule size on the kinetics of the electrochemical reduction of SiO2 granules in molten CaCl2 was investigated. SiO2 granules with different size ranges were electrolyzed in molten CaCl2 at 1123 K (850 °C). The reduction kinetics was evaluated on the basis of the growth rate of the reduced Si layer and the behavior of the current during electrolysis. The results indicated that finer SiO2 granules are more favorable for a high reduction rate because the contact resistance between the bottom Si plate and the reduced Si particles is small and the diffusion of O2− ions in CaCl2 inside the porous Si shell is easy. Electrolysis using SiO2 granules less than 0.1 mm in size maintained a current density of no less than 0.4 A cm−2 within 20 minutes, indicating that the electrochemical reduction of fine SiO2 granules in molten CaCl2 has the potential of becoming a high-yield production process for solar-grade silicon.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat European Photovoltaic Industry Association: Market Report 2013, European Photovoltaic Industry Association, Brussels, March, 2014. European Photovoltaic Industry Association: Market Report 2013, European Photovoltaic Industry Association, Brussels, March, 2014.
2.
Zurück zum Zitat Observ’ER: Fifteenth Inventory 2013 Edition–Worldwide Electricity Production from Renewable Energy Sources, Observ’ER, Paris, June, 2013. Observ’ER: Fifteenth Inventory 2013 EditionWorldwide Electricity Production from Renewable Energy Sources, Observ’ER, Paris, June, 2013.
3.
Zurück zum Zitat German Advisory Council on Global Change: World in Transition–Towards Sustainable Energy Systems, Earthscan, London, 2003. German Advisory Council on Global Change: World in Transition–Towards Sustainable Energy Systems, Earthscan, London, 2003.
4.
Zurück zum Zitat Arumu Publishing Co.: Rare Metal News, Arumu Publishing Co., Tokyo, August, 2014. Arumu Publishing Co.: Rare Metal News, Arumu Publishing Co., Tokyo, August, 2014.
5.
Zurück zum Zitat Arumu Publishing Co.: Rare Metal News, Arumu Publishing Co., Tokyo, April, 2014. Arumu Publishing Co.: Rare Metal News, Arumu Publishing Co., Tokyo, April, 2014.
6.
Zurück zum Zitat H. Schweickert, K. Reuschel, and H. Gutsche: U.S. patent, US3,011,877, 1961. H. Schweickert, K. Reuschel, and H. Gutsche: U.S. patent, US3,011,877, 1961.
7.
Zurück zum Zitat H. Gutsche: U.S. patent, US3,042,494, 1962. H. Gutsche: U.S. patent, US3,042,494, 1962.
8.
Zurück zum Zitat G. Bye and B. Ceccaroli: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 634–46.CrossRef G. Bye and B. Ceccaroli: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 634–46.CrossRef
9.
Zurück zum Zitat H. W. Ling: U.S. Patent, US3,012,861, 1961. H. W. Ling: U.S. Patent, US3,012,861, 1961.
10.
Zurück zum Zitat L. Bertrand, N. Star, and C.M. Olson: U.S. Patent, US3,012,862, 1961. L. Bertrand, N. Star, and C.M. Olson: U.S. Patent, US3,012,862, 1961.
11.
12.
Zurück zum Zitat V. Hoffmann, K. Petter, J. Djordjevic-Reiss, E. Enebakk, J.T. Håkedal, R. Tronstad, T. Vlasenko, I. Buchovskaja, S. Beringov, and M. Bauer: Proc. 23rd EU PVSEC, Valencia, Spain, 1–5 Sept. 2008, pp. 1117–20. V. Hoffmann, K. Petter, J. Djordjevic-Reiss, E. Enebakk, J.T. Håkedal, R. Tronstad, T. Vlasenko, I. Buchovskaja, S. Beringov, and M. Bauer: Proc. 23rd EU PVSEC, Valencia, Spain, 1–5 Sept. 2008, pp. 1117–20.
13.
Zurück zum Zitat Y. V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld and H. Kuntzel: JOM, 2012, vol. 64, pp. 957–67.CrossRef Y. V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld and H. Kuntzel: JOM, 2012, vol. 64, pp. 957–67.CrossRef
14.
Zurück zum Zitat IHS Technology: PV Manufacturing Technology Report—2014, IHS Technology, El Segundo Feb, 2014. IHS Technology: PV Manufacturing Technology Report—2014, IHS Technology, El Segundo Feb, 2014.
15.
Zurück zum Zitat S. Wakamatsu and H. Oda: Pct International Patent, WO2001/085613, 2001. S. Wakamatsu and H. Oda: Pct International Patent, WO2001/085613, 2001.
16.
Zurück zum Zitat A. Søiland, M. G. Dolmen, J. Heide, U. Thisted, G. Halvorsen, G. Ausland, K. Friestad, P. Preis, K. Peter, O. Graf, T. Bartel, and R. Tronstad: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 661–67.CrossRef A. Søiland, M. G. Dolmen, J. Heide, U. Thisted, G. Halvorsen, G. Ausland, K. Friestad, P. Preis, K. Peter, O. Graf, T. Bartel, and R. Tronstad: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 661–67.CrossRef
17.
Zurück zum Zitat K. Yasuda, K. Morita, and T. H. Okabe: Energy Technology, 2014, vol. 2, pp. 141–54.CrossRef K. Yasuda, K. Morita, and T. H. Okabe: Energy Technology, 2014, vol. 2, pp. 141–54.CrossRef
18.
Zurück zum Zitat W. O. Filtvedt, M. Javidi, A. Holt, M. C. Melaaen, E. Marstein, H. Tathgar, and P. A. Ramachandran: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 1980–95.CrossRef W. O. Filtvedt, M. Javidi, A. Holt, M. C. Melaaen, E. Marstein, H. Tathgar, and P. A. Ramachandran: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 1980–95.CrossRef
19.
Zurück zum Zitat B. G. Gribov and K. V. Zinov’ev: Inorg. Mater., 2003, vol. 39, pp. 653–62.CrossRef B. G. Gribov and K. V. Zinov’ev: Inorg. Mater., 2003, vol. 39, pp. 653–62.CrossRef
20.
Zurück zum Zitat H. Oda: Kogyo Zairyo, 2007, vol. 55, pp. 30–34. H. Oda: Kogyo Zairyo, 2007, vol. 55, pp. 30–34.
21.
Zurück zum Zitat A. F. B. Braga, S. P. Moreira, P. R. Zampieri, J. M. G. Bacchin, and P. R. Mei: Sol. Energy Mater. Sol. Cells, 2008, vol. 92, pp. 418–24.CrossRef A. F. B. Braga, S. P. Moreira, P. R. Zampieri, J. M. G. Bacchin, and P. R. Mei: Sol. Energy Mater. Sol. Cells, 2008, vol. 92, pp. 418–24.CrossRef
22.
Zurück zum Zitat M. D. Johnston, L. T. Khajavi, M. Li, S. Sokhanvaran, and M. Barati, JOM, 2012, vol. 64, pp. 935–45.CrossRef M. D. Johnston, L. T. Khajavi, M. Li, S. Sokhanvaran, and M. Barati, JOM, 2012, vol. 64, pp. 935–45.CrossRef
23.
Zurück zum Zitat Y. Sakaguchi, M. Ishizaki, T. Kawahara, M. Fukai, M. Yoshiyagawa, and F. Aratani, ISIJ Int., 1992, vol. 32, pp. 643–49.CrossRef Y. Sakaguchi, M. Ishizaki, T. Kawahara, M. Fukai, M. Yoshiyagawa, and F. Aratani, ISIJ Int., 1992, vol. 32, pp. 643–49.CrossRef
24.
Zurück zum Zitat K. Suzuki, T. Kumagai, and N. Sano: ISIJ Int., 1992, vol. 32, pp. 630–34.CrossRef K. Suzuki, T. Kumagai, and N. Sano: ISIJ Int., 1992, vol. 32, pp. 630–34.CrossRef
25.
26.
Zurück zum Zitat J. C. S. Pires, J. Otubo, A. F. B. Braga, and P. R. Mei: J. Mater. Process. Technol. 2005, vol. 169, pp. 16–20.CrossRef J. C. S. Pires, J. Otubo, A. F. B. Braga, and P. R. Mei: J. Mater. Process. Technol. 2005, vol. 169, pp. 16–20.CrossRef
27.
Zurück zum Zitat J. L. Gumaste, B. C. Mohanty, R. K. Galgali, U. Syamaprasad, B. Nayak, S. K. Singh, and P. K. Jena: Sol. Energy Mater., 1987, vol. 16, pp. 289–96.CrossRef J. L. Gumaste, B. C. Mohanty, R. K. Galgali, U. Syamaprasad, B. Nayak, S. K. Singh, and P. K. Jena: Sol. Energy Mater., 1987, vol. 16, pp. 289–96.CrossRef
28.
29.
Zurück zum Zitat I. C. Santos, A. P. Goncalves, C. S. Santos, M. Almeida, M. H. Afonso, and M. J. Cruz: Hydrometallurgy, 1990, vol. 23, pp. 237–46.CrossRef I. C. Santos, A. P. Goncalves, C. S. Santos, M. Almeida, M. H. Afonso, and M. J. Cruz: Hydrometallurgy, 1990, vol. 23, pp. 237–46.CrossRef
30.
Zurück zum Zitat Y. Sun, Q. Ye, C. Guo, H. Chen, X. Lang, F. David, Q. Luo, and C. Yang: Hydrometallurgy, 2013, vol. 139, pp. 64–72.CrossRef Y. Sun, Q. Ye, C. Guo, H. Chen, X. Lang, F. David, Q. Luo, and C. Yang: Hydrometallurgy, 2013, vol. 139, pp. 64–72.CrossRef
31.
Zurück zum Zitat J. Safarian and M. Tangstad: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1427–45.CrossRef J. Safarian and M. Tangstad: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1427–45.CrossRef
32.
Zurück zum Zitat M. A. Martorano, J. B. F. Neto, T. S. Oliveira, and T. O. Tsubaki: Mater. Sci. Eng. B, 2011, vol. 176, pp. 217–26.CrossRef M. A. Martorano, J. B. F. Neto, T. S. Oliveira, and T. O. Tsubaki: Mater. Sci. Eng. B, 2011, vol. 176, pp. 217–26.CrossRef
33.
Zurück zum Zitat S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi: Japanese Patent Application, JP2007145663, 2007. S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi: Japanese Patent Application, JP2007145663, 2007.
34.
Zurück zum Zitat K. Saegusa and T. Yamabayashi: Pct International Patent WO2007/001093, 2007. K. Saegusa and T. Yamabayashi: Pct International Patent WO2007/001093, 2007.
35.
36.
Zurück zum Zitat K. Yasuda, K. Saegusa, and T. H. Okabe: Metall. Mater. Trans. B, 2011, vol. 42, pp. 37–49.CrossRef K. Yasuda, K. Saegusa, and T. H. Okabe: Metall. Mater. Trans. B, 2011, vol. 42, pp. 37–49.CrossRef
37.
Zurück zum Zitat E. Robert and T. Zijlema: PCT International Patent WO2006/100114, 2006. E. Robert and T. Zijlema: PCT International Patent WO2006/100114, 2006.
38.
Zurück zum Zitat C. Rosenkilde: PCT International Patent WO2008/120994, 2008. C. Rosenkilde: PCT International Patent WO2008/120994, 2008.
39.
Zurück zum Zitat H. Tezuka: PCT International Patent WO2008/153181, 2008. H. Tezuka: PCT International Patent WO2008/153181, 2008.
40.
Zurück zum Zitat K. Saito, H. Munakata, and T. Mizoguchi: PCT International Patent WO2011/071030, 2011. K. Saito, H. Munakata, and T. Mizoguchi: PCT International Patent WO2011/071030, 2011.
41.
Zurück zum Zitat R. Monnier, D. Barakat, and J. Giacometti: U.S. Patent, US3,254,010, 1966. R. Monnier, D. Barakat, and J. Giacometti: U.S. Patent, US3,254,010, 1966.
42.
Zurück zum Zitat J. Olson and K. Carleton: J. Electrochem. Soc., 1981, vol. 128, pp. 2698–99.CrossRef J. Olson and K. Carleton: J. Electrochem. Soc., 1981, vol. 128, pp. 2698–99.CrossRef
43.
Zurück zum Zitat J. Cai, X. Luo, G. M. Haarberg, O. E. Kongstein, and S. Wang: J. Electrochem. Soc., 2012, vol. 159, pp. D155–58.CrossRef J. Cai, X. Luo, G. M. Haarberg, O. E. Kongstein, and S. Wang: J. Electrochem. Soc., 2012, vol. 159, pp. D155–58.CrossRef
44.
Zurück zum Zitat D. Elwell and R. S. Feigelson: Sol. Energy Mater., 1982, vol. 6, pp. 123–45.CrossRef D. Elwell and R. S. Feigelson: Sol. Energy Mater., 1982, vol. 6, pp. 123–45.CrossRef
45.
Zurück zum Zitat D. Elwell and G. M. Rao: J. Appl. Electrochem., 1988, vol. 18, pp. 15–22.CrossRef D. Elwell and G. M. Rao: J. Appl. Electrochem., 1988, vol. 18, pp. 15–22.CrossRef
46.
Zurück zum Zitat T. Oishi, M. Watanabe, K. Koyama, M. Tanaka, and K. Saegusa: J. Electrochem. Soc., 2011, vol. 158, pp. E93–99.CrossRef T. Oishi, M. Watanabe, K. Koyama, M. Tanaka, and K. Saegusa: J. Electrochem. Soc., 2011, vol. 158, pp. E93–99.CrossRef
47.
Zurück zum Zitat J. Xu and G. M. Haarberg: High Temperature Materials and Processes, 2013, vol. 32, pp. 97–105. J. Xu and G. M. Haarberg: High Temperature Materials and Processes, 2013, vol. 32, pp. 97–105.
48.
Zurück zum Zitat Y. Jiang, J. Xu, X. Guan, U.B. Pal, and S.N. Basu: MRS Proceedings, 2013, vol. 1493, pp. 231–35.CrossRef Y. Jiang, J. Xu, X. Guan, U.B. Pal, and S.N. Basu: MRS Proceedings, 2013, vol. 1493, pp. 231–35.CrossRef
49.
Zurück zum Zitat G. Z. Chen, D. J. Fray, and T. W. Farthing: Nature, 2000, vol. 407, pp. 361–64.CrossRef G. Z. Chen, D. J. Fray, and T. W. Farthing: Nature, 2000, vol. 407, pp. 361–64.CrossRef
50.
Zurück zum Zitat X. Y. Yan and D. J. Fray: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 685–93.CrossRef X. Y. Yan and D. J. Fray: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 685–93.CrossRef
51.
Zurück zum Zitat G. Z. Chen, E. Gordo, and D. J. Fray: Metall. Mater. Trans. B, 2004, vol. 35, pp. 223–33.CrossRef G. Z. Chen, E. Gordo, and D. J. Fray: Metall. Mater. Trans. B, 2004, vol. 35, pp. 223–33.CrossRef
52.
Zurück zum Zitat K. S. Mohandas and D. J. Fray: Metall. Mater. Trans. B, 2009, vol. 40, pp. 685–99.CrossRef K. S. Mohandas and D. J. Fray: Metall. Mater. Trans. B, 2009, vol. 40, pp. 685–99.CrossRef
53.
Zurück zum Zitat X. Y. Yan and D. J. Fray: J. Appl. Electrochem., 2009, vol. 39, pp. 1349–60.CrossRef X. Y. Yan and D. J. Fray: J. Appl. Electrochem., 2009, vol. 39, pp. 1349–60.CrossRef
54.
Zurück zum Zitat Q. Song, Q. Xu, X. Kang, J. Du, and Z. Xi: J. Alloy. Compd., 2010, vol. 490, pp. 241–46.CrossRef Q. Song, Q. Xu, X. Kang, J. Du, and Z. Xi: J. Alloy. Compd., 2010, vol. 490, pp. 241–46.CrossRef
55.
Zurück zum Zitat M. Erdoğan and I. Karakaya: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 798–804.CrossRef M. Erdoğan and I. Karakaya: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 798–804.CrossRef
56.
Zurück zum Zitat A. M. Abdelkader and D. J. Fray: Electrochim. Acta, 2012, vol. 64, pp. 10–16.CrossRef A. M. Abdelkader and D. J. Fray: Electrochim. Acta, 2012, vol. 64, pp. 10–16.CrossRef
57.
58.
Zurück zum Zitat T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401.CrossRef T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401.CrossRef
59.
Zurück zum Zitat K. Yasuda, T. Nohira, K. Amezawa, Y. H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol. 152, pp. D69–74.CrossRef K. Yasuda, T. Nohira, K. Amezawa, Y. H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol. 152, pp. D69–74.CrossRef
60.
Zurück zum Zitat K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito: Electrochim. Acta, 2005, vol. 51, pp. 561–65.CrossRef K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito: Electrochim. Acta, 2005, vol. 51, pp. 561–65.CrossRef
61.
Zurück zum Zitat K. Yasuda, T. Nohira, and Y. Ito: J. Phys. Chem. Solids, 2005, vol. 66, pp. 443–47.CrossRef K. Yasuda, T. Nohira, and Y. Ito: J. Phys. Chem. Solids, 2005, vol. 66, pp. 443–47.CrossRef
62.
Zurück zum Zitat K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol. 152, pp. D208–12.CrossRef K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol. 152, pp. D208–12.CrossRef
63.
Zurück zum Zitat K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata: J. Electrochem. Soc., 2007, vol. 154, pp. E95–E101.CrossRef K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata: J. Electrochem. Soc., 2007, vol. 154, pp. E95–E101.CrossRef
64.
Zurück zum Zitat K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata: Electrochim. Acta,. 2007, vol. 53, pp. 106–10.CrossRef K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata: Electrochim. Acta,. 2007, vol. 53, pp. 106–10.CrossRef
65.
Zurück zum Zitat K. Yasuda, T. Nohira, K. Takahashi, R. Hagiwara, and Y. H. Ogata: J. Electrochem. Soc., 2005, vol. 152, pp. D232–37.CrossRef K. Yasuda, T. Nohira, K. Takahashi, R. Hagiwara, and Y. H. Ogata: J. Electrochem. Soc., 2005, vol. 152, pp. D232–37.CrossRef
66.
Zurück zum Zitat Y. Nishimura, T. Nohira, K. Yasuda, Y. Fukunaka, and R. Hagiwara: Trans. Mater. Res. Soc. Jpn., 2010, vol. 35, pp. 47–49.CrossRef Y. Nishimura, T. Nohira, K. Yasuda, Y. Fukunaka, and R. Hagiwara: Trans. Mater. Res. Soc. Jpn., 2010, vol. 35, pp. 47–49.CrossRef
67.
Zurück zum Zitat Y. Nishimura, T. Nohira, K. Kobayashi, and R. Hagiwara: J. Electrochem. Soc., 2011, vol. 158, pp. E55–59.CrossRef Y. Nishimura, T. Nohira, K. Kobayashi, and R. Hagiwara: J. Electrochem. Soc., 2011, vol. 158, pp. E55–59.CrossRef
68.
Zurück zum Zitat K. Yasuda, T. Nohira, K. Kobayashi, N. Kani, T. Tsuda, and R. Hagiwara: Energy Technology, 2013, vol. 1, pp. 245–52.CrossRef K. Yasuda, T. Nohira, K. Kobayashi, N. Kani, T. Tsuda, and R. Hagiwara: Energy Technology, 2013, vol. 1, pp. 245–52.CrossRef
69.
Zurück zum Zitat T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda, and T. Homma: Electrochemistry, 2013, vol. 81, pp. 559–65.CrossRef T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda, and T. Homma: Electrochemistry, 2013, vol. 81, pp. 559–65.CrossRef
70.
Zurück zum Zitat X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: J. Electrochem. Soc., 2014, vol. 161, pp. D3116–19.CrossRef X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: J. Electrochem. Soc., 2014, vol. 161, pp. D3116–19.CrossRef
71.
Zurück zum Zitat X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1337-44.CrossRef X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1337-44.CrossRef
72.
Zurück zum Zitat X. Jin, P. Gao, D. Wang, X. Hu, and G. Z. Chen: Angew. Chem., 2004, vol. 116, pp. 751–54.CrossRef X. Jin, P. Gao, D. Wang, X. Hu, and G. Z. Chen: Angew. Chem., 2004, vol. 116, pp. 751–54.CrossRef
73.
Zurück zum Zitat W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen: ChemPhysChem., 2006, vol. 7, pp. 1750–58.CrossRef W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen: ChemPhysChem., 2006, vol. 7, pp. 1750–58.CrossRef
74.
Zurück zum Zitat W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen: J. Electroanal. Chem., 2010, vol. 639, pp. 130–40.CrossRef W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen: J. Electroanal. Chem., 2010, vol. 639, pp. 130–40.CrossRef
75.
Zurück zum Zitat W. Xiao, X. Jin, and G. Z. Chen: J. Mater. Chem. A., 2013, vol. 1, pp. 10243–50.CrossRef W. Xiao, X. Jin, and G. Z. Chen: J. Mater. Chem. A., 2013, vol. 1, pp. 10243–50.CrossRef
76.
Zurück zum Zitat W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: RSC Adv., 2012, vol. 2, pp. 7588–93.CrossRef W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: RSC Adv., 2012, vol. 2, pp. 7588–93.CrossRef
77.
Zurück zum Zitat P. C. Pistorius and D. J. Fray: J. S. Afr. Inst. Min. Metall., 2006, vol. 106, pp. 31–41. P. C. Pistorius and D. J. Fray: J. S. Afr. Inst. Min. Metall., 2006, vol. 106, pp. 31–41.
78.
Zurück zum Zitat S. Lee, J. Hur, and C. Seo: J. Ind. Eng. Chem., 2008, vol. 14, pp. 651–54.CrossRef S. Lee, J. Hur, and C. Seo: J. Ind. Eng. Chem., 2008, vol. 14, pp. 651–54.CrossRef
79.
Zurück zum Zitat E. Juzeliunas, A. Cox, and D. J. Fray: Electrochem. Comm., 2010, vol. 12, pp. 1270–74.CrossRef E. Juzeliunas, A. Cox, and D. J. Fray: Electrochem. Comm., 2010, vol. 12, pp. 1270–74.CrossRef
80.
Zurück zum Zitat E. Ergül, İ. Karakaya, and M. Erdoğan: J. Alloy. Compd., 2011, vol. 509, pp. 899–903.CrossRef E. Ergül, İ. Karakaya, and M. Erdoğan: J. Alloy. Compd., 2011, vol. 509, pp. 899–903.CrossRef
81.
Zurück zum Zitat S. K. Cho, F. F. Fan, and A. J. Bard: Electrochim. Acta, 2012, vol. 65, pp. 57–63.CrossRef S. K. Cho, F. F. Fan, and A. J. Bard: Electrochim. Acta, 2012, vol. 65, pp. 57–63.CrossRef
82.
Zurück zum Zitat J. Zhao, S. Lu, L. Hu, and C. Li: J. Energy Chem., 2013, vol. 22, pp. 819–25.CrossRef J. Zhao, S. Lu, L. Hu, and C. Li: J. Energy Chem., 2013, vol. 22, pp. 819–25.CrossRef
83.
Zurück zum Zitat J. Zhao, J. Li, P. Ying, W. Zhang, L. Meng, and C. Li: ChemCom., 2013, vol. 49, pp. 4477–79. J. Zhao, J. Li, P. Ying, W. Zhang, L. Meng, and C. Li: ChemCom., 2013, vol. 49, pp. 4477–79.
84.
Zurück zum Zitat H. Nishihara, T. Suzuki, H. Itoi, B. An, S. Iwamura, R. Berenguer, and T. Kyotani: Nanoscale, 2014, vol. 6, pp. 10574–83.CrossRef H. Nishihara, T. Suzuki, H. Itoi, B. An, S. Iwamura, R. Berenguer, and T. Kyotani: Nanoscale, 2014, vol. 6, pp. 10574–83.CrossRef
85.
Metadaten
Titel
The Role of Granule Size on the Kinetics of Electrochemical Reduction of SiO2 Granules in Molten CaCl2
verfasst von
Xiao Yang
Kouji Yasuda
Toshiyuki Nohira
Rika Hagiwara
Takayuki Homma
Publikationsdatum
22.09.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2016
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-015-0456-1

Weitere Artikel der Ausgabe 1/2016

Metallurgical and Materials Transactions B 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.