Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2015

01.01.2015

A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy

verfasst von: Jun Cai, Kuaishe Wang, Peng Zhai, Fuguo Li, Jie Yang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A modified Johnson-Cook constitutive equation of Ti-6Al-4V alloy is proposed based on hot compression tests performed in the temperature range of 1073-1323 K and strain rate 0.001-1 s−1. The experimental stress-strain data were employed to develop the modified Johnson-Cook constitutive equation of different phase regimes (α + β and β phase). The predicted flow stresses using the developed equation were compared with experimental data. Correlation coefficient (R) and average absolute relative error (AARE) were introduced to verify the validity of the constitutive equation. The values of R and AARE for α + β phase were 0.990 and 7.81%, respectively. And in β phase region, the values of R and AARE were 0.985 and 10.36%, respectively. Meanwhile, the accuracy, the number of material constants involved, and the computational time required of the constitutive equation were evaluated by comparing with a strain-compensated Arrhenius-type constitutive equation. The results indicate that accuracy of modified Johnson-Cook constitutive equation is higher than that of compensated Arrhenius-type model at α + β phase, while lower at single β phase region. Meanwhile, the time required for evaluating the material constants of modified Johnson-Cook constitutive equation is much shorter than that of the strain-compensated Arrhenius type ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. H, G.L. Xie, H.L. Zhang, and X.T. Wang, A Modified Zerilli-Armstrong Constitutive Model to Predict Hot Deformation Behavior of 20CrMo Alloy Steel, Mater. Des., 2014, 56, p 122–127CrossRef A. H, G.L. Xie, H.L. Zhang, and X.T. Wang, A Modified Zerilli-Armstrong Constitutive Model to Predict Hot Deformation Behavior of 20CrMo Alloy Steel, Mater. Des., 2014, 56, p 122–127CrossRef
2.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35(3), p 142–150CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35(3), p 142–150CrossRef
3.
Zurück zum Zitat K.P. Rao, Y.V.R.K. Prasad, and K. Suresh, Simulation Materials Modeling and Simulation of Isothermal Forging of Rolled AZ31B Magnesium Alloy: Anisotropy of Flow, Mater. Des., 2011, 32(5), p 2545–2553CrossRef K.P. Rao, Y.V.R.K. Prasad, and K. Suresh, Simulation Materials Modeling and Simulation of Isothermal Forging of Rolled AZ31B Magnesium Alloy: Anisotropy of Flow, Mater. Des., 2011, 32(5), p 2545–2553CrossRef
4.
Zurück zum Zitat Y. Han, G.J. Qiao, J.P. Sun, and D.N. Zou, A Comparative Study on Constitutive Relationship of As-cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103CrossRef Y. Han, G.J. Qiao, J.P. Sun, and D.N. Zou, A Comparative Study on Constitutive Relationship of As-cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103CrossRef
5.
Zurück zum Zitat H.Y. Li, X.F. Wang, D.D. Wei, J.D. Hu, and Y.H. Li, A Comparative Study on Modified Zerilli-Armstrong, Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Deformation Behavior in T24 Steel, Mater. Sci. Eng., A, 2012, 536, p 216–222CrossRef H.Y. Li, X.F. Wang, D.D. Wei, J.D. Hu, and Y.H. Li, A Comparative Study on Modified Zerilli-Armstrong, Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Deformation Behavior in T24 Steel, Mater. Sci. Eng., A, 2012, 536, p 216–222CrossRef
6.
Zurück zum Zitat X. Xiao, G.Q. Liu, B.F. Hu, X. Zheng, L.N. Wang, S.J. Chen, and A. Ullah, A Comparative Study on Arrhenius-Type Constitutive Equations and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in 12Cr3WV Steel, Comput. Mater. Sci., 2012, 62, p 227–234CrossRef X. Xiao, G.Q. Liu, B.F. Hu, X. Zheng, L.N. Wang, S.J. Chen, and A. Ullah, A Comparative Study on Arrhenius-Type Constitutive Equations and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in 12Cr3WV Steel, Comput. Mater. Sci., 2012, 62, p 227–234CrossRef
7.
Zurück zum Zitat J. Ding, G.Z. Kang, and Q.H. Kan, Constitutive Model for Uniaxial Time-Dependent Ratcheting of 6061-T6 Aluminum Alloy, Comput. Mater. Sci., 2012, 57, p 67–72CrossRef J. Ding, G.Z. Kang, and Q.H. Kan, Constitutive Model for Uniaxial Time-Dependent Ratcheting of 6061-T6 Aluminum Alloy, Comput. Mater. Sci., 2012, 57, p 67–72CrossRef
8.
Zurück zum Zitat H.J. Jun, K.S. Lee, H. Kato, H.S. Kim, and Y.W. Chang, Constitutive Model for High Temperature Deformation Behavior of Ti-Zr-Ni-Be Bulk Metallic Glass in Supercooled liquid Region, Comput. Mater. Sci., 2012, 61, p 213–223CrossRef H.J. Jun, K.S. Lee, H. Kato, H.S. Kim, and Y.W. Chang, Constitutive Model for High Temperature Deformation Behavior of Ti-Zr-Ni-Be Bulk Metallic Glass in Supercooled liquid Region, Comput. Mater. Sci., 2012, 61, p 213–223CrossRef
9.
Zurück zum Zitat M. Vural, D. Rittel, and G. Ravichandran, Large Strain Mechanical Behavior of 1018 Cold-Rolled Steel Over a Wide Range of Strain Rates, Metall Mat Trans A Phys Metall Mat Sci., 2003, 34(12), p 2873–2885CrossRef M. Vural, D. Rittel, and G. Ravichandran, Large Strain Mechanical Behavior of 1018 Cold-Rolled Steel Over a Wide Range of Strain Rates, Metall Mat Trans A Phys Metall Mat Sci., 2003, 34(12), p 2873–2885CrossRef
10.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng., A, 2010, 527(26), p 6980–6986CrossRef Y.C. Lin and X.M. Chen, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng., A, 2010, 527(26), p 6980–6986CrossRef
11.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef
12.
Zurück zum Zitat G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, In: Proceedings of the 7th International Symposium on Ballistics (Den Haag, The Netherlands), 1983, p 541-547 G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, In: Proceedings of the 7th International Symposium on Ballistics (Den Haag, The Netherlands), 1983, p 541-547
13.
Zurück zum Zitat P.J. Zerilli and R.W. Armstrong, Dislocation-mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef P.J. Zerilli and R.W. Armstrong, Dislocation-mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
14.
Zurück zum Zitat Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1-3), p 29–34CrossRef Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1-3), p 29–34CrossRef
15.
Zurück zum Zitat C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef
16.
Zurück zum Zitat F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scr. Mater., 2007, 57(8), p 759–762CrossRef F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scr. Mater., 2007, 57(8), p 759–762CrossRef
17.
Zurück zum Zitat S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress In a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng., A, 2009, 500(1-2), p 114–121CrossRef S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress In a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng., A, 2009, 500(1-2), p 114–121CrossRef
18.
Zurück zum Zitat D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528(4-5), p 1937–1943CrossRef D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528(4-5), p 1937–1943CrossRef
19.
Zurück zum Zitat H.J. Zhang, W.D. Wen, H.T. Cui, and Y. Xu, A Modified Zerilli-Armstrong Model for Alloy IC10 Over a Wide Range of Temperatures and Strain Rates, Mater. Sci. Eng., A, 2009, 527(1-2), p 328–333CrossRef H.J. Zhang, W.D. Wen, H.T. Cui, and Y. Xu, A Modified Zerilli-Armstrong Model for Alloy IC10 Over a Wide Range of Temperatures and Strain Rates, Mater. Sci. Eng., A, 2009, 527(1-2), p 328–333CrossRef
20.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576CrossRef
21.
Zurück zum Zitat H.Y. Li, X.F. Wang, J.Y. Duan, and J.J. Liu, A Modified Johnson Cook Model for Elevated Temperature Flow Behavior of T24 Steel, Mater. Sci. Eng., A, 2013, 577, p 138–146CrossRef H.Y. Li, X.F. Wang, J.Y. Duan, and J.J. Liu, A Modified Johnson Cook Model for Elevated Temperature Flow Behavior of T24 Steel, Mater. Sci. Eng., A, 2013, 577, p 138–146CrossRef
22.
Zurück zum Zitat A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418CrossRef A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418CrossRef
23.
Zurück zum Zitat Q.Y. Hou and J.T. Wang, A Modified Johnson-Cook Constitutive Model for Mg-Gd-Y Alloy Extended to a Wide Range of Temperatures, Comput. Mater. Sci., 2010, 50(1), p 147–152CrossRef Q.Y. Hou and J.T. Wang, A Modified Johnson-Cook Constitutive Model for Mg-Gd-Y Alloy Extended to a Wide Range of Temperatures, Comput. Mater. Sci., 2010, 50(1), p 147–152CrossRef
24.
Zurück zum Zitat Y.P. Wang, C.J. Han, C. Wang, and S.K. Li, A Modified Johnson-Cook Model for 30Cr2Ni4MoV Rotor Steel Over a Wide Range of Temperature and Strain Rate, J. Mater. Sci., 2011, 46(9), p 2922–2927CrossRef Y.P. Wang, C.J. Han, C. Wang, and S.K. Li, A Modified Johnson-Cook Model for 30Cr2Ni4MoV Rotor Steel Over a Wide Range of Temperature and Strain Rate, J. Mater. Sci., 2011, 46(9), p 2922–2927CrossRef
25.
Zurück zum Zitat W.D. Song, J.G. Ning, X.N. Mao, and H.P. Tang, A Modified Johnson-Cook Model for Titanium Matrix Composites Reinforced with Titanium Carbide Particles at Elevated Temperatures, Mater. Sci. Eng., A, 2013, 576, p 280–289CrossRef W.D. Song, J.G. Ning, X.N. Mao, and H.P. Tang, A Modified Johnson-Cook Model for Titanium Matrix Composites Reinforced with Titanium Carbide Particles at Elevated Temperatures, Mater. Sci. Eng., A, 2013, 576, p 280–289CrossRef
26.
Zurück zum Zitat P.D. Nicolaou and S.L. Semiatin, An Analysis of Cavity Growth During Open-Die Hot Forging of Ti-6Al-4V, Metall. Mater. Trans. A, 2005, 36(6), p 1567–1574CrossRef P.D. Nicolaou and S.L. Semiatin, An Analysis of Cavity Growth During Open-Die Hot Forging of Ti-6Al-4V, Metall. Mater. Trans. A, 2005, 36(6), p 1567–1574CrossRef
27.
Zurück zum Zitat R.G. Guan, Y.T. Je, Y. Zhan, and C.S. Lee, Effect of Microstructure on Deformation Behavior of Ti-6Al-4V Alloy During Compressing Process, Mater. Des., 2012, 36, p 796–803CrossRef R.G. Guan, Y.T. Je, Y. Zhan, and C.S. Lee, Effect of Microstructure on Deformation Behavior of Ti-6Al-4V Alloy During Compressing Process, Mater. Des., 2012, 36, p 796–803CrossRef
28.
Zurück zum Zitat W.X. Yu, M.Q. Li, and J. Luo, Variation Effect of Strain Rate on Microstructure in Isothermal Compression of Ti-6Al-4V Alloy, Rare Met., 2012, 31(1), p 7–11CrossRef W.X. Yu, M.Q. Li, and J. Luo, Variation Effect of Strain Rate on Microstructure in Isothermal Compression of Ti-6Al-4V Alloy, Rare Met., 2012, 31(1), p 7–11CrossRef
29.
Zurück zum Zitat S.H. Huang, Y.Y. Zong, and D.B. Shan, Application of Thermohydrogen Processing to Ti6Al4V Alloy Blade Isothermal Forging, Mater. Sci. Eng. A, 2013, 561, p 17–25CrossRef S.H. Huang, Y.Y. Zong, and D.B. Shan, Application of Thermohydrogen Processing to Ti6Al4V Alloy Blade Isothermal Forging, Mater. Sci. Eng. A, 2013, 561, p 17–25CrossRef
30.
Zurück zum Zitat G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, and O.A. Kaibyshev, Development of Ti-6Al-4V Sheet with Low Temperature Superplastic Properties, J. Mater. Process. Technol., 2001, 116(2-3), p 265–268CrossRef G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, and O.A. Kaibyshev, Development of Ti-6Al-4V Sheet with Low Temperature Superplastic Properties, J. Mater. Process. Technol., 2001, 116(2-3), p 265–268CrossRef
31.
Zurück zum Zitat P. Comley, Multi-Rate Superplastic Forming of Fine Grain Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2007, 16(2), p 150–154CrossRef P. Comley, Multi-Rate Superplastic Forming of Fine Grain Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2007, 16(2), p 150–154CrossRef
32.
Zurück zum Zitat X.M. Li and S. Soo, Numerical Simulation and Superplastic Forming of Ti-6Al-4V Alloy for a Dental Prosthesis, J. Mater. Eng. Perform., 2011, 20(3), p 341–347CrossRef X.M. Li and S. Soo, Numerical Simulation and Superplastic Forming of Ti-6Al-4V Alloy for a Dental Prosthesis, J. Mater. Eng. Perform., 2011, 20(3), p 341–347CrossRef
Metadaten
Titel
A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy
verfasst von
Jun Cai
Kuaishe Wang
Peng Zhai
Fuguo Li
Jie Yang
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1243-x

Weitere Artikel der Ausgabe 1/2015

Journal of Materials Engineering and Performance 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.