Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2018

03.07.2018

Development and Characterization of a Novel Ti-Modified High-Si Medium-Mn Steel Possessing Ultra-High Strength and Reasonable Ductility After Hot Rolling

verfasst von: Nicky Kisku, Arnab Sarkar, K. K. Ray, Sumantra Mandal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work systematically correlates the strength–ductility relationship of a Ti-Si-modified Fe-Mn-Al-C steel with its microstructural characteristics such as grain size, type and morphology of precipitates, and the transformation-induced plasticity (TRIP) effect during hot deformation. The Ti-Si-modified multicomponent steel developed through melting and casting route is subjected to thermo-mechanical processing such as hot forging (at 1373 K) and subsequent hot rolling (at 1173 K). An excellent combination of ultra-high tensile strength (UTS ~ 1700 ± 20 MPa), reasonable ductility (elongation ~ 11%) and high work hardening behavior (n ~ 0.89) is achieved in the hot-rolled specimen as compared to the hot-forged one (UTS ~ 824 ± 9 MPa, n ~ 0.07) with negligible change in the elongation. The better tensile properties of the hot-rolled specimen in contrast to the hot-forged one are due to the combined effects of grain refinement during rolling, twin–twin interactions, precipitation strengthening by mixture of hexagonal structured Ti3(Al,Si)C2 and Mn-Al-Si-rich carbide precipitates and most significantly the enhanced TRIP effect. The lower critical resolved shear stress value of martensitic transformation instigates the TRIP effect during tensile testing which resulted in the increased hardness and strength of the hot-rolled specimen. The above observation offers a strong support to the proposition that TRIP effect is the dominant plasticity-enhancing mechanism activated during the deformation of the low-stacking fault energy (~ 12.2 mJ/m2) Si-Ti-modified, medium-Mn multicomponent steel employed in the present investigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Chen, Y. Zhao, and X. Qin, Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review, Acta Mater. Sin., 2013, 26, p 1–15 L. Chen, Y. Zhao, and X. Qin, Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review, Acta Mater. Sin., 2013, 26, p 1–15
2.
Zurück zum Zitat S. Lee and B.C. De Cooman, Effect of the Intercritical Annealing Temperature on the Mechanical Properties of 10 pct Mn Multi-Phase Steel, Metall. Mater. Trans. A, 2014, 45A, p 5009–5016CrossRef S. Lee and B.C. De Cooman, Effect of the Intercritical Annealing Temperature on the Mechanical Properties of 10 pct Mn Multi-Phase Steel, Metall. Mater. Trans. A, 2014, 45A, p 5009–5016CrossRef
3.
Zurück zum Zitat S.S. Sohn, K. Choi, J. Kwak, N.J. Kim, and S. Lee, Novel Ferrite—Austenite Duplex Lightweight Steel with 77% Ductility by Transformation Induced Plasticity and Twinning Induced Plasticity Mechanisms, Acta Mater., 2014, 78, p 181–189CrossRef S.S. Sohn, K. Choi, J. Kwak, N.J. Kim, and S. Lee, Novel Ferrite—Austenite Duplex Lightweight Steel with 77% Ductility by Transformation Induced Plasticity and Twinning Induced Plasticity Mechanisms, Acta Mater., 2014, 78, p 181–189CrossRef
4.
Zurück zum Zitat D. Lee, J. Kim, S. Lee, K. Lee, and B.C. De Cooman, Microstructures and Mechanical Properties of Ti and Mo Micro-alloyed Medium Mn steel, Mater. Sci. Eng. A, 2017, 706, p 1–14CrossRef D. Lee, J. Kim, S. Lee, K. Lee, and B.C. De Cooman, Microstructures and Mechanical Properties of Ti and Mo Micro-alloyed Medium Mn steel, Mater. Sci. Eng. A, 2017, 706, p 1–14CrossRef
5.
Zurück zum Zitat G. Sun, S. Hu, Y. Gao, and W. Chen, Influence of Direct Annealing Heat Treatment on the Mechanical Properties of As-cast TWIP Steels, J. Mater. Eng. Perform., 2017, 26, p 1918–1985 G. Sun, S. Hu, Y. Gao, and W. Chen, Influence of Direct Annealing Heat Treatment on the Mechanical Properties of As-cast TWIP Steels, J. Mater. Eng. Perform., 2017, 26, p 1918–1985
6.
Zurück zum Zitat Y. Lu, B. Hutchinson, D.A. Molodov, and G. Gottstein, Effect of Deformation and Annealing on the Formation and Reversion of ε-martensite in an Fe-Mn-C alloy, Acta Mater., 2010, 58, p 3079–3090CrossRef Y. Lu, B. Hutchinson, D.A. Molodov, and G. Gottstein, Effect of Deformation and Annealing on the Formation and Reversion of ε-martensite in an Fe-Mn-C alloy, Acta Mater., 2010, 58, p 3079–3090CrossRef
7.
Zurück zum Zitat A. Momeni, K. Dehghani, and X.X. Zhang, Mechanical and Microstructural Analysis of Duplex Stainless Steel under Hot Working Condition, J. Mater. Sci., 2012, 47, p 2966–2974CrossRef A. Momeni, K. Dehghani, and X.X. Zhang, Mechanical and Microstructural Analysis of Duplex Stainless Steel under Hot Working Condition, J. Mater. Sci., 2012, 47, p 2966–2974CrossRef
8.
Zurück zum Zitat G. Frommeyer, U. Brüx, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43, p 438–446CrossRef G. Frommeyer, U. Brüx, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43, p 438–446CrossRef
9.
Zurück zum Zitat A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Enhanced Strength-Ductility Relationship in a Medium Mn High Al-alloyed Multicomponent Steel Through Thermomechanical Processing, Mater. Sci. Eng. A, 2017, 703, p 205–213CrossRef A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Enhanced Strength-Ductility Relationship in a Medium Mn High Al-alloyed Multicomponent Steel Through Thermomechanical Processing, Mater. Sci. Eng. A, 2017, 703, p 205–213CrossRef
10.
Zurück zum Zitat A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40, p 3076–3090CrossRef A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40, p 3076–3090CrossRef
11.
Zurück zum Zitat O. Zambrano, Stacking Fault Energy Maps of Fe-Mn-Al-C Steels: Effect of Temperature, Grain Size and Variations in Compositions, Eng. Mater. Technol., 2016, 138, p 1–9CrossRef O. Zambrano, Stacking Fault Energy Maps of Fe-Mn-Al-C Steels: Effect of Temperature, Grain Size and Variations in Compositions, Eng. Mater. Technol., 2016, 138, p 1–9CrossRef
12.
Zurück zum Zitat A. Marandi, A. Zarei-hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-2.5Si-1.5 Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78CrossRef A. Marandi, A. Zarei-hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-2.5Si-1.5 Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78CrossRef
13.
Zurück zum Zitat H. Aydin, E. Essadiqi, I.-H. Jung, and S. Yue, Development of 3rd Generation AHSS with Medium Mn content Alloying Compositions, Mater. Sci. Eng. A, 2013, 564, p 501–508CrossRef H. Aydin, E. Essadiqi, I.-H. Jung, and S. Yue, Development of 3rd Generation AHSS with Medium Mn content Alloying Compositions, Mater. Sci. Eng. A, 2013, 564, p 501–508CrossRef
14.
Zurück zum Zitat B. Sun, H. Aydin, F. Fazeli, and S. Yue, Microstructure Evolution of a Medium Manganese Steel during Thermomechanical Processing, Metall. Mater. Trans. A, 2016, 47, p 1782–1791CrossRef B. Sun, H. Aydin, F. Fazeli, and S. Yue, Microstructure Evolution of a Medium Manganese Steel during Thermomechanical Processing, Metall. Mater. Trans. A, 2016, 47, p 1782–1791CrossRef
15.
Zurück zum Zitat A. Sarkar and T.K. Bandhyopadhay, Effect of 8–13 wt% Mn on the Microstructural Characterization of Fe-Mn-C Steel, Int. J. Mater. Sci., 2015, 5, p 16–21CrossRef A. Sarkar and T.K. Bandhyopadhay, Effect of 8–13 wt% Mn on the Microstructural Characterization of Fe-Mn-C Steel, Int. J. Mater. Sci., 2015, 5, p 16–21CrossRef
16.
Zurück zum Zitat D. Zamani, A. Golshan, G. Dini, Z.N. Ismarrubie, M.A. Azmah Hanim, and Z. Sajuri, Optimization of Cold rolling and Subsequent Annealing Treatment on Mechanical Properties of TWIP Steel, J. Mater. Eng. Perform., 2017, 26, p 3666–3675CrossRef D. Zamani, A. Golshan, G. Dini, Z.N. Ismarrubie, M.A. Azmah Hanim, and Z. Sajuri, Optimization of Cold rolling and Subsequent Annealing Treatment on Mechanical Properties of TWIP Steel, J. Mater. Eng. Perform., 2017, 26, p 3666–3675CrossRef
17.
Zurück zum Zitat S. Lee, Y. Estrin, and B.C. De Cooman, Effect of the Strain Rate on the TRIP-TWIP Transition in Austenitic Fe-12 pct Mn-0.6 pct C TWIP Steel, Metall. Mater. Trans. A, 2014, 45A, p 717–730CrossRef S. Lee, Y. Estrin, and B.C. De Cooman, Effect of the Strain Rate on the TRIP-TWIP Transition in Austenitic Fe-12 pct Mn-0.6 pct C TWIP Steel, Metall. Mater. Trans. A, 2014, 45A, p 717–730CrossRef
18.
Zurück zum Zitat O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn- (Al, Si) TRIP/TWIP Steels Development-Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409CrossRef O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn- (Al, Si) TRIP/TWIP Steels Development-Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409CrossRef
19.
Zurück zum Zitat O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168CrossRef O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168CrossRef
20.
Zurück zum Zitat H.R. Abedi, A.Z. Hanzaki, N. Haghdadi, and P.D. Hodgson, Substructure Induced Twinning in Low density Steel, Scr. Mater., 2017, 128, p 69–73CrossRef H.R. Abedi, A.Z. Hanzaki, N. Haghdadi, and P.D. Hodgson, Substructure Induced Twinning in Low density Steel, Scr. Mater., 2017, 128, p 69–73CrossRef
21.
Zurück zum Zitat Y.U. Heo, Y.Y. Song, S.J. Park, H.K.D.H. Bhadeshia, and D.W. Suh, Influence of Silicon in Low density Fe-C-Mn-Al Steel, Metall. Mater. Trans. A, 2012, 43, p 1731–1735CrossRef Y.U. Heo, Y.Y. Song, S.J. Park, H.K.D.H. Bhadeshia, and D.W. Suh, Influence of Silicon in Low density Fe-C-Mn-Al Steel, Metall. Mater. Trans. A, 2012, 43, p 1731–1735CrossRef
22.
Zurück zum Zitat A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Influence of Annealing Parameters on Phase Evolution and Recrystallization Kinetics of a Mn-Al-Si Alloyed Duplex Steel, Mater. Charact., 2017, 134, p 213–224CrossRef A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Influence of Annealing Parameters on Phase Evolution and Recrystallization Kinetics of a Mn-Al-Si Alloyed Duplex Steel, Mater. Charact., 2017, 134, p 213–224CrossRef
23.
Zurück zum Zitat I. Tsukatani, S. Hashimoto, and T. Inoue, Effects of Silicon and Manganese Addition on Mechanical Properties of High-Strength Hot-rolled Sheet Steel Containing Retained Austenite, ISIJ Int., 1991, 31, p 992–1000CrossRef I. Tsukatani, S. Hashimoto, and T. Inoue, Effects of Silicon and Manganese Addition on Mechanical Properties of High-Strength Hot-rolled Sheet Steel Containing Retained Austenite, ISIJ Int., 1991, 31, p 992–1000CrossRef
24.
Zurück zum Zitat M.G. Akben, T. Chandra, P. Plassiard, and J.J. Jonas, Dynamic Precipitation and Solute Hardening in a Titanium Microalloyed Steel Containing Three Levels of Manganese, Acta Metall., 1984, 32, p 591–601CrossRef M.G. Akben, T. Chandra, P. Plassiard, and J.J. Jonas, Dynamic Precipitation and Solute Hardening in a Titanium Microalloyed Steel Containing Three Levels of Manganese, Acta Metall., 1984, 32, p 591–601CrossRef
25.
Zurück zum Zitat H. Zhang, Y. Qin, T. Hu, X. Wang, and Y. Zhou, On the Faceted and Inclined Twin Boundary of Titanium Carbide Derived from Nanolaminated Ti3AlC2, J. Am. Ceram. Soc., 2015, 98, p 1664–1667CrossRef H. Zhang, Y. Qin, T. Hu, X. Wang, and Y. Zhou, On the Faceted and Inclined Twin Boundary of Titanium Carbide Derived from Nanolaminated Ti3AlC2, J. Am. Ceram. Soc., 2015, 98, p 1664–1667CrossRef
26.
Zurück zum Zitat S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072CrossRef S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072CrossRef
27.
Zurück zum Zitat S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656CrossRef S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656CrossRef
28.
Zurück zum Zitat S. Tokita, H. Kokawa, Y.S. Sato, and H.T. Fujii, In Situ EBSD Observation of Grain Boundary Character Distribution Evolution During Thermomechanical Process used for Grain Boundary Engineering of 304 austenitic Stainless Steel, Mater. Charact., 2017, 131, p 31–38CrossRef S. Tokita, H. Kokawa, Y.S. Sato, and H.T. Fujii, In Situ EBSD Observation of Grain Boundary Character Distribution Evolution During Thermomechanical Process used for Grain Boundary Engineering of 304 austenitic Stainless Steel, Mater. Charact., 2017, 131, p 31–38CrossRef
29.
Zurück zum Zitat T.S. Prithiv, P. Bhuyan, S.K. Pradhan, V.S. Sarma, and S. Mandal, A Critical Evaluation on Efficacy of Recrystallization vs. Strain Induced Boundary Migration in Achieving Grain Boundary Engineered Microstructure in a Ni-base Superalloy, Acta Mater., 2018, 146, p 187–201CrossRef T.S. Prithiv, P. Bhuyan, S.K. Pradhan, V.S. Sarma, and S. Mandal, A Critical Evaluation on Efficacy of Recrystallization vs. Strain Induced Boundary Migration in Achieving Grain Boundary Engineered Microstructure in a Ni-base Superalloy, Acta Mater., 2018, 146, p 187–201CrossRef
30.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245CrossRef H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245CrossRef
31.
Zurück zum Zitat W. Seo, D. Jeong, H. Sung, and S. Kim, Tensile and High Cycle Fatigue Behaviors of high-Mn Steels at 298 and 110K, Mater. Charact., 2017, 124, p 65–72CrossRef W. Seo, D. Jeong, H. Sung, and S. Kim, Tensile and High Cycle Fatigue Behaviors of high-Mn Steels at 298 and 110K, Mater. Charact., 2017, 124, p 65–72CrossRef
32.
Zurück zum Zitat D.M. Moore and R.C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed., Oxford University Press, New York, 1997 D.M. Moore and R.C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed., Oxford University Press, New York, 1997
33.
Zurück zum Zitat J. Kim, S.-J. Lee, and B.C. De Cooman, Effect of Al on the Stacking Fault Energy of Fe-18Mn-0.6C Twinning-Induced Plasticity, Scr. Mater., 2011, 65, p 363–366CrossRef J. Kim, S.-J. Lee, and B.C. De Cooman, Effect of Al on the Stacking Fault Energy of Fe-18Mn-0.6C Twinning-Induced Plasticity, Scr. Mater., 2011, 65, p 363–366CrossRef
34.
Zurück zum Zitat D. Hull and D.J. Bacon, Introductions to Dislocations, 5th ed., Butterworth-Heinemann, Oxford, 2011 D. Hull and D.J. Bacon, Introductions to Dislocations, 5th ed., Butterworth-Heinemann, Oxford, 2011
35.
Zurück zum Zitat Z.H. Cai, H.Y. Li, S.Y. Jing, Z.C. Li, H. Ding, Z.Y. Tang, and R.D.K. Misra, Influence of Annealing Temperature on Microstructure and Tensile Property of Cold-rolled Fe-0.2C-11Mn-6Al Steel, Mater. Charact., 2018, 137, p 256–262CrossRef Z.H. Cai, H.Y. Li, S.Y. Jing, Z.C. Li, H. Ding, Z.Y. Tang, and R.D.K. Misra, Influence of Annealing Temperature on Microstructure and Tensile Property of Cold-rolled Fe-0.2C-11Mn-6Al Steel, Mater. Charact., 2018, 137, p 256–262CrossRef
36.
Zurück zum Zitat J. Kim and B.C. De Cooman, On the Stacking Fault Energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42A, p 932–936CrossRef J. Kim and B.C. De Cooman, On the Stacking Fault Energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42A, p 932–936CrossRef
37.
Zurück zum Zitat A. Bhattacharyya, G.V.S. Sastry, and V.V. Kutumbarao, The Origin of Microtwinning at Low Strains During Low-Cycle Fatigue of Inconel 718 at Room Temperature, J. Mater. Sci., 1999, 34, p 587–591CrossRef A. Bhattacharyya, G.V.S. Sastry, and V.V. Kutumbarao, The Origin of Microtwinning at Low Strains During Low-Cycle Fatigue of Inconel 718 at Room Temperature, J. Mater. Sci., 1999, 34, p 587–591CrossRef
38.
Zurück zum Zitat L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Twin-Induced Plasticity of an ECAP-Processed TWIP Steel, J. Mater. Eng. Perform., 2017, 26, p 554–562CrossRef L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Twin-Induced Plasticity of an ECAP-Processed TWIP Steel, J. Mater. Eng. Perform., 2017, 26, p 554–562CrossRef
39.
Zurück zum Zitat D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig, The Influence of Stacking Fault Energy on the Microstructural and Strain-Hardening Evolution of Fe-Mn-Al-Si Steels During Tensile Deformation, Acta Mater., 2015, 100, p 178–190CrossRef D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig, The Influence of Stacking Fault Energy on the Microstructural and Strain-Hardening Evolution of Fe-Mn-Al-Si Steels During Tensile Deformation, Acta Mater., 2015, 100, p 178–190CrossRef
40.
Zurück zum Zitat Y.C. Zhou, J.X. Chen, and J.Y. Wang, Strengthening of Ti3AlC2 by Incorporation of Si to form Ti3Al1-xSixC2 Solid Solutions, Acta Mater., 2006, 54, p 1317–1322CrossRef Y.C. Zhou, J.X. Chen, and J.Y. Wang, Strengthening of Ti3AlC2 by Incorporation of Si to form Ti3Al1-xSixC2 Solid Solutions, Acta Mater., 2006, 54, p 1317–1322CrossRef
41.
Zurück zum Zitat M.W. Barsoum, The MN+1AXN Phases: a New Class of Solids; Thermodynamically Stable Nanolaminates, Prog. Solid State Chem. Solid State Chem., 2000, 28, p 201–281CrossRef M.W. Barsoum, The MN+1AXN Phases: a New Class of Solids; Thermodynamically Stable Nanolaminates, Prog. Solid State Chem. Solid State Chem., 2000, 28, p 201–281CrossRef
42.
Zurück zum Zitat H. Gleiter and E. Hornbogen, Precipitation Hardening by Coherent Particles, Mater. Sci. Eng., 1968, 2, p 285–302CrossRef H. Gleiter and E. Hornbogen, Precipitation Hardening by Coherent Particles, Mater. Sci. Eng., 1968, 2, p 285–302CrossRef
43.
Zurück zum Zitat G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi, Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel, Mater. Lett., 2010, 64, p 15–18CrossRef G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi, Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel, Mater. Lett., 2010, 64, p 15–18CrossRef
44.
Zurück zum Zitat M. Mirzaee, A. Momeni, N. Aieni, and H. Keshmiri, Effect of Quenching and Tempering on Microstructure and Mechanical Properties of 410 and 410 Ni Martensitic Steels, J. Mater. Res., 2017, 32, p 687–696CrossRef M. Mirzaee, A. Momeni, N. Aieni, and H. Keshmiri, Effect of Quenching and Tempering on Microstructure and Mechanical Properties of 410 and 410 Ni Martensitic Steels, J. Mater. Res., 2017, 32, p 687–696CrossRef
45.
Zurück zum Zitat M. Eskandari, M.A. Bonab, A. Hanzaki, and S.M. Fatemi, Effect of Hot Deformation on Texture and Microstructure in Fe-Mn Austenitic Steel During Compression Loading, J. Mater. Eng. Perform., 2018, 27, p 1555–1569CrossRef M. Eskandari, M.A. Bonab, A. Hanzaki, and S.M. Fatemi, Effect of Hot Deformation on Texture and Microstructure in Fe-Mn Austenitic Steel During Compression Loading, J. Mater. Eng. Perform., 2018, 27, p 1555–1569CrossRef
46.
Zurück zum Zitat Y.C. Lin, Y. Xia, Y. Jiang, H. Zhou, and L. Li, Precipitation Hardening of 2024-T3 Aluminum Alloy During Creep Aging, Mater. Sci. Eng. A, 2013, 565, p 420–429CrossRef Y.C. Lin, Y. Xia, Y. Jiang, H. Zhou, and L. Li, Precipitation Hardening of 2024-T3 Aluminum Alloy During Creep Aging, Mater. Sci. Eng. A, 2013, 565, p 420–429CrossRef
47.
Zurück zum Zitat I.-J. Park, K.-H. Jeong, J.-G. Jung, C.S. Lee, and Y.-K. Lee, The Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-added Fe-18Mn-0.6C Twinning Induced Plasticity Steels, Int. J. Hydrog. Energy, 2012, 37, p 9925–9932CrossRef I.-J. Park, K.-H. Jeong, J.-G. Jung, C.S. Lee, and Y.-K. Lee, The Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-added Fe-18Mn-0.6C Twinning Induced Plasticity Steels, Int. J. Hydrog. Energy, 2012, 37, p 9925–9932CrossRef
48.
Zurück zum Zitat Y.C. Lin, L. Li, D.-G. He, M.-S. Chen, and G.-Q. Liu, Effects of Pre-treatments on Mechanical Properties and Fracture Mechanism of a Nickel-Based Superalloy, Mater. Sci. Eng. A, 2017, 679, p 401–409CrossRef Y.C. Lin, L. Li, D.-G. He, M.-S. Chen, and G.-Q. Liu, Effects of Pre-treatments on Mechanical Properties and Fracture Mechanism of a Nickel-Based Superalloy, Mater. Sci. Eng. A, 2017, 679, p 401–409CrossRef
49.
Zurück zum Zitat V. Tsakiris and D.V. Edmonds, Martensite and Deformation Twinning in Austenitic Steels, Mater. Sci. Eng. A, 1999, 275, p 430–436CrossRef V. Tsakiris and D.V. Edmonds, Martensite and Deformation Twinning in Austenitic Steels, Mater. Sci. Eng. A, 1999, 275, p 430–436CrossRef
50.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448CrossRef H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448CrossRef
51.
Zurück zum Zitat A.O. Inegbenebor, R.D. Jones, and B. Ralph, Mechanical Properties and Strain-Induced Phase Transformations of Some High-Strength Manganese Steels, J. Mater. Sci., 1989, 24, p 3529–3535CrossRef A.O. Inegbenebor, R.D. Jones, and B. Ralph, Mechanical Properties and Strain-Induced Phase Transformations of Some High-Strength Manganese Steels, J. Mater. Sci., 1989, 24, p 3529–3535CrossRef
52.
Zurück zum Zitat A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe-Mn-C steel, Mater. Sci. Eng. A, 2008, 483, p 184–187CrossRef A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe-Mn-C steel, Mater. Sci. Eng. A, 2008, 483, p 184–187CrossRef
53.
Zurück zum Zitat S. Lee, K. Lee, and B.C.D.E. Cooman, Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel, Metall. Mater. Trans. A, 2015, 46A, p 2356–2363CrossRef S. Lee, K. Lee, and B.C.D.E. Cooman, Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel, Metall. Mater. Trans. A, 2015, 46A, p 2356–2363CrossRef
54.
Zurück zum Zitat M. Andersson, R. Stalmans, and J. Agren, Unified Thermodynamic Analysis of the Stress Assisted γ→ε Martensitic Transformation in Fe-Mn-Si Alloys, Acta Mater., 1998, 46, p 3883–3891CrossRef M. Andersson, R. Stalmans, and J. Agren, Unified Thermodynamic Analysis of the Stress Assisted γε Martensitic Transformation in Fe-Mn-Si Alloys, Acta Mater., 1998, 46, p 3883–3891CrossRef
55.
Zurück zum Zitat Thermo-Calc User’s guide, R. Version, Stockholm: Thermo-Calc Software AB and Foundation of Computational Thermodynamics, 1995–2006. Thermo-Calc User’s guide, R. Version, Stockholm: Thermo-Calc Software AB and Foundation of Computational Thermodynamics, 1995–2006.
Metadaten
Titel
Development and Characterization of a Novel Ti-Modified High-Si Medium-Mn Steel Possessing Ultra-High Strength and Reasonable Ductility After Hot Rolling
verfasst von
Nicky Kisku
Arnab Sarkar
K. K. Ray
Sumantra Mandal
Publikationsdatum
03.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3480-x

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Engineering and Performance 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.